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SUMMARY

Theassembly andmaturationof neural circuits require
a delicate balance between synapse formation and
elimination. The cellular and molecular mechanisms
that coordinate synaptogenesis and synapse elimina-
tion are poorly understood. In C. elegans, DD moto-
neurons respecify their synaptic connectivity during
development by completely eliminating existing
synapses and forming new synapses without
changing cell morphology. Using loss- and gain-of-
function genetic approaches, we demonstrate that
CYY-1, a cyclin box-containing protein, drives
synapse removal in this process. In addition, cyclin-
dependent kinase-5 (CDK-5) facilitates new synapse
formation by regulating the transport of synaptic vesi-
cles to the sites of synaptogenesis. Furthermore, we
show that coordinated activation of UNC-104/Kine-
sin3 and Dynein is required for patterning newly
formed synapses. During the remodeling process,
presynaptic components from eliminated synapses
are recycled to new synapses, suggesting that
signaling mechanisms and molecular motors link the
deconstructionofexistingsynapsesand theassembly
of new synapses during structural synaptic plasticity.

INTRODUCTION

Synapse formation and elimination are fundamental elements in

both the initial construction of neural circuits and the experience-

dependent modification of the mature nervous system (Sanes

and Lichtman, 1999; Trachtenberg et al., 2002). During develop-

ment, refinement of neural connectivity after axon guidance and

dendrite morphogenesis are characterized by dynamic, regu-

lated synaptogenesis and synapse elimination (Cline, 2001;

Hua and Smith, 2004). Even in mature animals, a certain amount
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of ‘‘synapse turnover’’ is maintained, suggesting that a balanced

synapse formation and elimination are likely required for the

maintenance of circuit functions. It is generally believed that

neuronal activity drives the modification of neural circuits

through strengthening and weakening connectivity between

neurons (Balice-Gordon and Lichtman, 1994; Goda and Davis,

2003). Although a large body of work has focused on the molec-

ular mechanisms of synapse formation, less is known about the

process of synapse elimination. Very few studies have focused

on the mechanisms that coordinate synaptogenesis and

synapse elimination. Since synapse formation and elimination

are opposite events that often take place simultaneously in the

same neuron, intracellular mechanisms must exist to restrict

disassembly of existing synapses and construction of new

ones to distinct subcellular domains.

In C. elegans, six GABAergic DD motoneurons stereotypically

rewire synaptic connections during larval development by elim-

inating existing synapses and forming new synapses without

axonal or dendritic pruning. During the embryonic and early L1

(the first larval) stages, the DD motoneurons receive synaptic

inputs from cholinergic DA and DB neurons on their dorsal

processes and send synaptic outputs to the ventral body

muscles. At the end of the L1 stage, the DD motoneurons

completely disassemble and eliminate their presynaptic termi-

nals from the ventral processes and form new synapses on the

dorsal processes (White et al., 1978; Hallam and Jin, 1998).

Consequently, starting from the L2 (the second larval) stage,

the DD motoneurons receive synaptic inputs from cholinergic

VA and VB neurons on the ventral side and send synaptic

outputs to the dorsal body muscles (White et al., 1978). This

dramatic and stereotyped synaptic remodeling provides us

with a genetic system to study the molecular basis of structural

plasticity of synaptic circuits.

The molecular mechanisms of DD synaptic remodeling are

largely unknown. lin-14, a heterochronic gene that controls the

temporal order of a variety of cell lineages, regulates the timing

of DD synaptic remodeling (Hallam and Jin, 1998).

Cyclin-dependent kinase-5 (CDK-5) is a postmitotic CDK that

functions exclusively in the brain and is activated by noncyclin
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activators, p35 and p39 (Cheung and Ip, 2007; also see Zhang

and Herrup, 2008). CDK-5 plays multiple roles in various aspects

of nervous system development, including neuronal migration,

neuronal survival, dendritic spine formation, synaptogenesis,

adult neurogenesis, neurotransmission, homeostatic plasticity,

and learning and memory (Cheung et al., 2006; Cheung and Ip,

2007; Lagace et al., 2008; Seeburg et al., 2008; Lai and Ip,

2009). Transient CDK-5 activation leads to an increased number

of synapses in the hippocampus (Fischer et al., 2005). In addi-

tion, we found that CDK-5 and its activator, p35, critically regu-

late trafficking of presynaptic components to axons. We have

also identified an additional pathway involving a cyclin, CYY-1,

that functions in parallel with the CDK-5 pathway to regulate

distribution of presynaptic material (Ou et al., 2010).

In this study, we investigated how CYY-1 and CDK-5 regulate

synapse elimination and synapse formation during the rewiring

of the DD synaptic connectivity in vivo. We found that CYY-1

contributes to synapse elimination by disassembling the ventral

synapses, while CDK-5 contributes to synapse formation by

transporting disassembled synaptic material to the new synaptic

sites. We also demonstrated that synaptic components from the

disassembled synapses are recycled for the formation of new

synapses during synaptic remodeling. In addition, CDK-5 facili-

tates UNC-104/Kinesin3-mediated formation of new dorsal

synapses during DD remodeling.
RESULTS

Synaptic Remodeling Visualized by GFP::RAB-3
To directly visualize the DD synaptic remodeling process,

including synapse elimination and synapse formation, we

labeled DD presynapses by expressing GFP::RAB-3 (Mahoney

et al., 2006; Klassen and Shen, 2007) under the DD-specific

flp-13 promoter (Kim and Li, 2004). In synchronized cultures,

the distribution of RAB-3 fluorescence in the dorsal and ventral

processes of DD neurons was examined at various time points

including 11, 16, 18, 19.5, 22, 26, and 28 hr after egg laying

(see Figure S1 available online). A cytoplasmic mCHERRY

marker was used to accurately identify the DD processes. Before

synaptic remodeling, all GFP::RAB-3 puncta are located

ventrally (Figure S1B, B1). Upon the start of remodeling, ventral

puncta gradually become smaller (Figure S1B, B2 and B3),

weaker (Figure S1B, B4), and eventually disappear (Figure S1B,

B5). Concurrently, RAB-3 puncta appear in the dorsal processes

and become more intense over time (Figure S1B, B3–B5). DD

synaptic remodeling processwas quantified by counting animals

containing GFP::RAB-3 puncta only in the ventral processes

(only V), both in ventral and dorsal processes (V+D), or only in

the dorsal processes (only D), as shown in Figure S1C. Indeed,

we observed a steady decrease in ‘‘only V’’ animals and

a concomitant increase in the ‘‘only D’’ animals throughout the

remodeling process, indicative of the gradual elimination of

ventral synapses and the concurrent formation of dorsal

synapses (Figure S1C). We chose to focus the present study

on the time points 16, 18, 19.5, 22, and 26 hr after egg laying,

during which the majority of the remodeling process takes place

(Figure S1C).
Involvement of CYY-1 and CDK-5 in DD Synaptic
Remodeling
Wehave recently identified that a protein, CYY-1, which contains

a cyclin-like domain, and CDK-5 are important for the correct

localization of presynaptic components in C. elegans (Ou

et al., 2010). Since the remodeling of DD synapses involves the

formation of new synapses in distal axons, it is likely that

regulation of axonal transport is an important step during this

structural plasticity process. Therefore, we tested if these two

molecules, CYY-1 and CDK-5, affect synaptic remodeling of

DD neurons.

To do this, we utilized the putative null alleles cyy-1(wy302)

and cdk-5(ok626). In L1-staged cyy-1 or cdk-5 animals, RAB-3

fluorescence is distributed ‘‘only V’’ (Figure 1A, A3 and A5) just

as in wild-type animals (Figure 1A, A1). However, in the L4 or

young adult-staged cyy-1 or cdk-5 animals, RAB-3 fluorescence

still remains in the ventral process (Figure 1A, A4 andA6) unlike in

the wild-type controls, where RAB-3 is only found in the dorsal

processes (Figure 1A, A2). Furthermore, in cyy-1 cdk-5 double

mutants, while the RAB-3 fluorescence is only found in the

ventral process in L1 animals (Figure 1A, A7) just as in the wild-

type controls (Figure 1A, A1), the majority of the RAB-3 fluores-

cence remains in the ventral process in L4 or young adult

animals, indicative of near-complete failure of DD remodeling

(Figure 1A, A8). Other synaptic vesicle proteins, SNB-1/synapto-

brevin and SNG-1/synaptogyrin, also showed a similar pheno-

type to RAB-3 in cyy-1 cdk-5 double mutants (Figure S2). These

results suggest that CYY-1 and CDK-5 are not required for

patterning of synapses in the L1 stage, but they are essential

for DD synaptic remodeling.

Because other synaptic vesicle proteins, SNB-1/synaptobre-

vin and SNG-1/synaptogyrin, displayed a similar phenotype to

RAB-3 in the double mutants (Figure S2) and GFP::RAB-3 reli-

ably visualized DD synaptic remodeling process (Figure S1),

we used GFP::RAB-3 (wyIs202) for further experiments to label

synaptic vesicles during the DD remodeling process.

To ensure that the GFP::RAB-3 phenotype in the mutants

indeed represents synaptic remodeling defects, we colabeled

synaptic vesicles and active zones with RAB-3 and SYD-2/Li-

prin-a, respectively. In the cyy-1 cdk-5 double mutants, SYD-2

exhibited a similar phenotype as synaptic vesicle proteins—the

majority of SYD-2 signals were found in the ventral process,

which colocalize with the RAB-3 puncta in the ventral process

at the L4 stage (Figure 1B).

Furthermore, we performed serial electron microscopy (EM)

reconstruction to definitively examine the synaptic structural

defects in the double mutants. We reconstructed dorsal nerve

cord and analyzed the appearance of synaptic vesicles and

active zones of DD neurons in wild-type and cyy-1 cdk-5

double-mutant worms. Consistent with the results from the

fluorophore-tagged synaptic markers (Figures 1A, and1B;

Figure S2), the number of synaptic vesicles and active zones

in the DD dorsal process is significantly reduced in the adult

double-mutant worms (Figures 1C–1E). Taken together, our

findings suggest that CYY-1 and CDK-5 combined are

necessary for eliminating presynapses from the ventral pro-

cess and forming new synapses in the dorsal process of

DD neurons.
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Figure 1. CYY-1 and CDK-5 Are Required for Synaptic Remodeling in DDs

(A) Wild-type animals expressing GFP::RAB-3 in DD motoneurons (wyIs202) at the stages of L1 (A1) and L4 or young adult (A2). cyy-1 and cdk-5 single mutants

show incomplete elimination of ventral GFP::RAB-3 puncta at the stages of L4 or young adult (A4 and A6). In cyy-1 cdk-5 double mutant, most of GFP::RAB-3

puncta are in the ventral processes (A8). All the single and double mutants exhibit wild-type localization of GFP::RAB-3 on the ventral side at the stage of L1 (A3,

A5, and A7). Schematic diagrams showing phenotypes are shown above and below each image. Green dots, GFP::RAB-3; red lines, DD V+D and commissures;

red ovals, DD cell bodies; D, dorsal processes; V, ventral processes. Magnified images are shown for representative regions (white-dotted boxes) of D and V.

Scale bars, 20 mm. See also Figures S2 and S3.

(B) Ventral GFP::RAB-3 puncta of DD neurons in cyy-1 cdk-5 double mutants colocalize with an active-zone protein SYD-2/Liprin-a. Wild-type or cyy-1 cdk-5

double-mutant animals coexpressing GFP::RAB-3 and mCHERRY::SYD-2 in DD motoneurons (wyEx3650) were imaged at the stages of L4 or young adult.

Representative regions (white-dotted boxes) are magnified on the right side. Scale bars, 20 and 10 mm for low- and high-magnification images, respectively.

(C) Dorsal synapses of DD neurons in cyy-1 cdk-5 double mutants are defective at the stage of young adult. Representative EM images of varicosities of DD in

wild-type (upper) or cyy-1 cdk-5 double-mutant animals (lower). Arrows indicate active zones.

(D and E) Average density of synaptic vesicles (SVs) in each varicosity (D) and the percentage of varicosities with active zones (E) were quantified. Error

bars, standard error. Number of varicosities is five and six for wild-type and cyy-1 cdk-5 double-mutant worms, respectively. *p < 0.05, Student’s t test;

**p < 0.0001, c2 test.
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CYY-1 and CDK-5 Trigger DD Synaptic Remodeling
Because both CYY-1 and CDK-5 are necessary for the comple-

tion of synaptic remodeling, we next tested if these two proteins

are sufficient to initiate DD synaptic remodeling. In adult

cyy-1 cdk-5 double mutants, the majority of the GFP::RAB-3

remains in the ventral processes, suggesting that the DD

synaptic remodeling is almost completely blocked in the

absence of these two molecules (Figure S3B, B1; quantified in

Figure S3C). To ask whether CYY-1 and CDK-5 play instructive

roles in the remodeling process, we tested if expression of

CYY-1 and CDK-5 at the mid-L3 stage, a time point long after

the normal remodeling process has been completed in wild-

type worms, can rescue the remodeling defect in cyy-1 cdk-5

double-mutant animals (Figure S3A). To induce CYY-1 and

CDK-5 expression, we generated transgenic worms expressing

CYY-1 and CDK-5 under the control of the heat-shocked

promoter (Phs). Without heat-shocked treatment, cyy-1 cdk-5;

Ex[Phs::cyy-1, Phs::cdk-5] worms distribute most GFP::RAB-3

puncta in the ventral processes at the young adult stage (Fig-

ure S3B, B2; quantified in Figure S3C). A small amount of rescue

was observed (Figure S3C), possibly due to the leaky expression

of CYY-1 and CDK-5 under the heat-shocked promoter. Inter-

estingly, after heat-shocked treatment (2 hr at 30�C),
cyy-1 cdk-5; Ex[Phs::cyy-1, Phs::cdk-5] worms showed

a dramatic rescue of the DD synaptic remodeling defect, indi-

cated by the disappearance of ventral GFP::RAB-3 puncta as

well as the appearance of dorsal GFP::RAB-3 puncta

(Figure S3B, B4; quantified in Figure S3C). As a control, in

cyy-1 cdk-5 double mutants without the transgene, DD synaptic

remodeling is still blocked after heat-shocked treatment

(Figure S3B, B3; quantified in Figure S3C). In addition, heat-

shocked treatment at the L4 stage also achieved a significant

rescue of the DD synaptic remodeling defect in the double

mutants (data not shown), indicating that the expression of these

molecules can drive the remodeling process. Taken together,

these data argue that expression of CYY-1 and CDK-5 is suffi-

cient to trigger the synaptic remodeling process even at very

late stages of development. In other words, the remodeling

process was suspended in the double mutants but could still

proceed when CYY-1 and CDK-5 were expressed later in life.

CYY-1 Functions in Ventral Presynapse RAB-3
Elimination during DD Synaptic Remodeling
To further dissect CYY-1’s role during DD remodeling, we

analyzed the loss-of-function phenotype of cyy-1(wy302)

mutants at different time points during the remodeling process.

In addition to counting the ‘‘only V,’’ ‘‘V+D,’’ and ‘‘only D’’ worms

within a population (Figure 2D), we also measured the average

fluorescence intensity of ventral (Figure 2F) and dorsal RAB-3

puncta (Figure 2G). The cyy-1worm exhibits significant amounts

of punctate ventral GFP::RAB-3 even at the late remodeling time

points of 22 and 26 hr after egg laying compared to wild-type

(Figure 2B, V insets; quantified in Figure 2F), with only slight

reduction of the amount of dorsal GFP::RAB-3 at 26 hr time point

compared to wild-type (Figure 2G). In addition, cyy-1 mutants

have a reduced percentage of worms displaying complete re-

modeling (Figure 2D, green-lined black-filled at 26 hr) compared

to wild-type worms (Figure 2D, red-lined black-filled at 26 hr).
These data suggest that CYY-1 is involved in GFP::RAB-3 elim-

ination during the remodeling process.

If CYY-1 is a critical molecule to instruct the synapse elimina-

tion process, manipulation of CYY-1 expression might lead to

precocious elimination of synapses from the ventral processes.

To test this hypothesis, we expressed CYY-1 in DD neurons

using the DD-specific flp-13 promoter whose expression is initi-

ated in embryos, well before the normal developmental time for

the remodeling process. Indeed, overexpression of CYY-1

increases the percentage of worms showingGFP::RAB-3 signals

in V+D at the 16 hr time point (Figure 2D, yellow-lined gray-filled)

and also increases the ratio of dorsal to ventral plus dorsal

[D/(V+D)] GFP::RAB-3 intensity (Figure 2E), which are indicative

of accelerated remodeling.

Delayed ventral GFP::RAB-3 elimination in cyy-1mutants (Fig-

ure 2D, green-lined black-filled) was rescued by specific expres-

sion of CYY-1 in DDs (Figure 2D, purple-lined black-filled). These

results indicate that CYY-1 acts cell autonomously in DDs. Taken

together, the delayed GFP::RAB-3 elimination in the cyy-1

mutants and the accelerated GFP::RAB-3 elimination in

CYY-1-overexpressing animals argue that CYY-1 is required

for the elimination of existing GFP::RAB-3 presynaptic structures

in the ventral process.

Consistent with our finding of CYY-1 in ventral GFP::RAB-3

elimination during DD synaptic remodeling, distribution of

CYY-1 in DDs shifts to ventral from dorsal processes during

the remodeling (Figure S4), further supporting its role in ventral

synapses.
CDK-5 Facilitates the Formation of New Dorsal RAB-3
Puncta for DD Synaptic Remodeling
Interestingly, careful inspection of cdk-5 and cyy-1 loss and gain

of function of animals revealed both similarities and differences

in their DD remodeling phenotypes. Specifically, in cdk-5

mutants, formation of new dorsal GFP::RAB-3 is significantly de-

layed compared to wild-type worms (Figure 3B, insets of B4–B6

compared to those of B1–B3; Figure 3D, green-lined gray-filled

compared to red-lined gray-filled; quantified in Figure 3G).

Moreover, by 26 hr, none of cdk-5 mutants showed completed

remodeling (Figure 3D, green-lined gray-filled at 26 hr; quantified

in Figure 3F), suggesting that similar to CYY-1, CDK-5 is also

required for the completion of the remodeling process.

To determine whether CYY-1 and CDK-5 play similar roles in

DD remodeling, we performed gain-of-function experiments by

overexpressing CDK-5 in DD neurons of wild-type worms.

Transgenic worms overexpressing CDK-5 show accelerated re-

modeling at the early time points 16 and 18 hr after egg laying

compared to wild-type (Figure 3E; Figure 3C, inset of C4

compared to that of C1; Figure 3D, yellow-lined gray-filled

compared to red-lined gray-filled; quantified in Figure 3G).

Interestingly, the intensity of ventral GFP::RAB-3 was not

affected in worms overexpressing CDK-5 (Figure 3F), implying

that, unlike CYY-1, CDK-5 is probably not directly involved in

the elimination of ventral GFP::RAB-3. Instead, CDK-5 appears

to affect the clearance of RAB-3 through other mechanisms.

The remodeling phenotype in cdk-5 mutants (Figure 3D, green)

was rescuedbyoverexpressingCDK-5 inDDneurons (Figure 3D,
Neuron 70, 742–757, May 26, 2011 ª2011 Elsevier Inc. 745
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Figure 2. CYY-1 Is Required for the Completion of DD Synaptic Remodeling

(A) Schematic of experimental timeline. Experiments were performed at 25�C. See Experimental Procedures for details. White box denotes the L1 stage. See also

Figure S1.

(B) cyy-1mutants exhibit incomplete synaptic remodeling. Note that cyy-1mutants still have significant amount of GFP::RAB-3 in the ventral processes at 26 hr

(B6). Scale bars, 20 mm.

(C) Overexpression of CYY-1 accelerates DD synaptic remodeling. Note the weak ventral GFP::RAB-3 signal at 16, 19.5, and 22 hr in worms overexpressing

CYY-1 (C4–C6). Scale bars, 20 mm.

(D) Quantification for appearance of dorsal GFP::RAB-3 and disappearance of ventral GFP::RAB-3. The x axis indicates the time points since egg laying. White,

gray, and black indicate worms showing GFP::RAB-3 signals ‘‘only V,’’ V+D, and ‘‘only D’’ sides, respectively, regardless of their intensity. wyEx2844 is Ex

[DD::CYY-1] in wild-type background, andwyEx2889 is Ex[DD::CYY-1] in cyy-1mutant background. *p < 0.05, **p < 0.005, ns, not significant relative to wild-type;

#p < 0.05, ##p < 0.005, NS, not significant relative to cyy-1, Fisher’s exact test. Symbols for statistics are labeled inside of the gray-filled and above the black-filled

bars for the phenotypes of ‘‘V+D’’ and ‘‘only D,’’ respectively.
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purple), indicating that CDK-5 acts cell autonomously in DD

neurons.
CYY-1 and CDK-5 Differentially Regulate Synapse
Elimination and Formation during DD Synaptic
Remodeling
The aforementioned data suggest that although both CYY-1 and

CDK-5 are required for DD synaptic remodeling, their specific

functions might be different. Our data indicate that CYY-1

promotes the removal of ventral GFP::RAB-3 puncta, while

CDK-5 promotes the assembly of dorsal GFP::RAB-3 puncta.

To further test this model, we investigated the epistatic relation-

ship between these two genes. We first tested whether overex-

pression of CYY-1 in the cdk-5 single-mutant background can

substitute for the lack of CDK-5 function. If CYY-1 and CDK-5

play different roles in DD remodeling, overexpression of CYY-1

in the cdk-5 single mutant should not rescue the cdk-5 mutant

phenotype; furthermore, CYY-1 overexpression in the cdk-5

mutant background might cause the removal of ventral

GFP::RAB-3. Consistent with these predictions, overexpression

of CYY-1 does not rescue the delayed and incomplete remodel-

ing in the cdk-5 mutants (Figure 4A, A4; Figure 4B, purple-lined

gray-filled; Figure 4C) compared to cdk-5 without the transgene

(Figure 4A, A3; Figure 4B, green-lined gray-filled; Figure 4C).

The CYY-1 transgene is functional since it rescues the cyy-1

mutant phenotype (Figure 2D). In addition, overexpressing

CYY-1 still caused the elimination of ventral GFP::RAB-3, even

in the cdk-5mutant background (Figure 4A, A4; quantified in Fig-

ure 4D), again supporting themodel that the function of CYY-1 to

remove RAB-3 in the ventral process is independent of CDK-5.

However, the accelerated new synapse formation caused by

the CYY-1 overexpression (Figure 2C, C4; Figures 2D and 4B,

yellowat 16hr timepoint)wasblockedby thecdk-5mutation (Fig-

ure 4B, purple; quantified in Figures 4C and 4E), suggesting that

new GFP::RAB-3 puncta caused by CYY-1 overexpression do

require the functionofCDK-5.Taken together, thesedata strongly

support the distinct differential roles of CYY-1 and CDK-5 during

the synaptic remodeling. One possible model is that CYY-1 is

required for the dispersal of existing GFP::RAB-3 structures,

and CDK-5 is required for transportation of the dispersed

GFP::RAB-3 signals to the dorsal locations for new synapses or

local assembly of new GFP::RAB-3 in the dorsal axon.

Several predictions can be made based on this model. First, if

CYY-1 and CDK-5 have distinct functions, overexpression of

CDK-5 should not rescue the cyy-1mutant phenotype. Second,

if the dispersal of ventral GFP::RAB-3 signals from the ventral

synapses precedes the formation of new synapses, slowing

down synapse elimination should hamper the formation of new

synapses. Third, if the dispersal of synaptic material from the ex-

isting synapses is reused for the formation of new synapses, one

should be able to observe that directly by marking disassembled

synaptic material. To test these predictions, we performed the

following experiments.
(E–G) Average intensity quantification for the ratio of [D/(V+D)] GFP::RAB-3 (E), fo

represent mean ± SEM. *p < 0.05 and **p < 0.005 relative to wild-type, Student’s

Figure S4.
First, we overexpressed CDK-5 in the cyy-1 single-mutant

background and found that the incomplete remodeling in the

cyy-1 mutant was not rescued by the CDK-5 transgene (Fig-

ure 5B, purple compared to green). Second, the accelerated

dorsal formation of GFP::RAB-3 puncta caused by overex-

pression of CDK-5 is blocked by the cyy-1 mutation (Figure 5A,

A4 compared to A2; Figure 5B, yellow compared with purple;

quantified in Figures 5C–5E), suggesting that the function of

CYY-1 might proceed the action of CDK-5 during the remod-

eling. Thus, it is conceivable that CYY-1 disassembles ventral

synapses, from which the materials are then transported to

dorsal processes and recycled for new synaptogenesis

events.
Disassembled Ventral Synaptic Material Is Reused
for Dorsal Synapse Formation during DD Synaptic
Remodeling
To definitively test if synapse disassembly is a prerequisite step

that contributes to dorsal synapse formation, we directly visual-

ized the fate of ventral RAB-3 molecules during DD remodeling

using a photoswitchable GFP (Dendra2) whose fluorescence is

irreversibly converted from green to red by UV irradiation

(Ando et al., 2002; Arimura et al., 2004; Miyawaki, 2004;

Gurskaya et al., 2006). In these photoconversion experiments,

we selected Dendra2::RAB-3-expressing worms (Figure 5F,

F1) around the 16–18 hr time point. Local UV irradiation of the

DD2 ventral process resulted in immediate photoconversion

from green to red fluorescence in worms expressing

Dendra2::RAB-3 (Figure 5F, F2). Then, we tracked the red

fluorescence to determine if the red RAB-3 molecules are

eventually clustered at the newly formed dorsal synapses.

Indeed, we found that 8–10 hr after UV irradiation, clustered

Dendra2::RAB-3 red fluorescence was found in the dorsal

process (Figure 5F, F4; quantified in Figure 5G). As a control,

DD1 neuron that has not been activated by UV did not show

any red fluorescence of Dendra2::RAB-3 (Figure 5F, F4) but

showed the green fluorescence as DD2 neuron (Figure 5F, F3).

These results suggest that ventral synaptic vesicle protein

RAB-3 is transported to dorsal processes to form new synapses

during DD synaptic remodeling.

These observations are consistent with the model that CYY-1

is responsible for the dispersal of ventral RAB-3 puncta, while

CDK-5 promotes the transport of the ventral GFP::RAB-3 and

the formation of new RAB-3 puncta in the dorsal process. To

further test this model, we performed the same photoconversion

experiment in cyy-1 and cdk-5 mutants. If CYY-1 regulates

ventral RAB-3 elimination and CDK-5 regulates the transporta-

tion of the ventral RAB-3 to the dorsal side, then the percentage

of photoconverted red signal in dorsal synapses should be

significantly lower in cyy-1 and cdk-5 mutants. As expected,

we found that the percentages of photoconverted red signal in

the dorsal process are significantly lower in cyy-1 (38.6%) and

cdk-5 (8.4%) mutants than in wild-type (59.5%) worms
r ventral GFP::RAB-3 (F), and for dorsal GFP::RAB-3 (G) from (B) and (C). Data

t test. See the Supplemental Experimental Procedures for n numbers. See also
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Figure 3. CDK-5 Is Required for the Completion of DD Synaptic Remodeling

(A) Schematic of experimental timeline. Experiments were performed at 25�C. See Experimental Procedures for details.

(B) cdk-5mutants exhibit impaired synapse formation in the dorsal process and incomplete elimination of ventral synapses during DD synaptic remodeling. Note

that about 80%of cdk-5mutant worms do not haveGFP::RAB-3 yet in the dorsal processes at 19.5 hr (B4) and still have a significant amount of GFP::RAB-3 in the

ventral processes at 26 hr (B6). Scale bars, 20 mm.

(C) Overexpression of CDK-5 accelerates dorsal synapse formation during the remodeling. Note that about 80% of worms overexpressing CDK-5 show

GFP::RAB-3 puncta in the dorsal processes even at 16 hr (C4). Scale bars, 20 mm.

(D) Quantification as described in the Figure 2D legend. **p < 0.005, ns, not significant relative to wild-type; ##p < 0.005 relative to cdk-5, Fisher’s exact test.

Symbols for statistics are labeled inside of the gray-filled and above the black-filled bars for the phenotypes of ‘‘V+D’’ and ‘‘only D,’’ respectively.

(E–G) Average intensity quantification for the ratio of [D/(V+D)] GFP::RAB-3 (E), for ventral GFP::RAB-3 (F), and for dorsal GFP::RAB-3 (G) from (B) and (C). Data

represent mean ± SEM. *p < 0.05 and **p < 0.005 relative to wild-type, Student’s t test. See the Supplemental Experimental Procedures for n numbers.
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Figure 4. CYY-1 and CDK-5 Play Differential Roles during DD Synaptic Remodeling

(A) Shown are representative images at 19.5 hr time point. Scale bar, 20 mm.

(B) Quantification as described in the Figure 2D legend. wyEx2844 is Ex[DD::CYY-1] in wild-type background, and wyEx2889 is Ex[DD::CYY-1] in cdk-5 mutant

background. *p < 0.05, **p < 0.005, ns, not significant relative to wild-type; NS, not significant relative to cdk-5, Fisher’s exact test. Symbols for statistics are

labeled inside of the gray-filled and above the black-filled bars for the phenotypes of ‘‘V+D’’ and ‘‘only D,’’ respectively.

(C–E) Average intensity quantification for the ratio of [D/(V+D)] GFP::RAB-3 (C), for ventral GFP::RAB-3 (D), and for dorsal GFP::RAB-3 (E). Data represent mean ±

SEM. *p < 0.05 and **p < 0.005 relative to wild-type otherwise indicated; ##p < 0.005, NS, not significant relative to cdk-5, Student’s t test. See the Supplemental

Experimental Procedures for n numbers.
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(Figure 5G). In particular, the percentage of photoconverted red

signal that is remained in the ventral process is much higher in

cyy-1 (56.4%) and cdk-5 (30.3%) mutants than in wild-type

(6.2%) worms (Figure 5G), likely due to the blockade of elimina-

tion of RAB-3 proteins in cyy-1 and the blockade of transporta-

tion of RAB-3 from the ventral to the dorsal process in cdk-5

mutants, respectively. In addition, a combined 95% (ventral

56.4% + dorsal 38.6%) of photoconverted RAB-3 remains at

8–10 hr after UV in cyy-1mutants compared with 65.7% (ventral

6.2% + dorsal 59.5%) in wild-type worms, indicating the

blockade of the elimination of RAB-3 proteins in cyy-1 mutants.
Taken together, these data strengthen our model that CYY-1

mediates the elimination of ventral RAB-3 proteins, while

CDK-5 mediates the transportation of ventral RAB-3 proteins

to the dorsal process to form new synapses during DD

remodeling.

Remnant Ventral RAB-3 Puncta in cyy-1,
but Not in cdk-5, Mutants Represent Presynaptic
and Postsynaptic Specializations
Our model indicates that the ectopic ventral GFP::RAB-3 puncta

in cyy-1 resulted from the failure of synapse elimination, while
Neuron 70, 742–757, May 26, 2011 ª2011 Elsevier Inc. 749
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Figure 5. CYY-1 Contributes to the Function of CDK-5 to Form Dorsal Synapses during DD Synaptic Remodeling

(A) Representative images of GFP::RAB-3 in four different genotypes at 16–18 hr time points. Scale bar, 20 mm.

(B) Quantification of the progression of remodeling in control animals as well as cyy-1; Ex[DD::CDK-5]. The same convention of statistical analysis was used as in

the Figure 2D legend. **p < 0.005, ns, not significant relative to wild-type; NS, not significant relative to cyy-1, Fisher’s exact test. Symbols for statistics are labeled

inside of the gray-filled and above the black-filled bars for the phenotypes of ‘‘V+D’’ and ‘‘only D,’’ respectively.

(C–E)Average intensityquantification for the ratioof [D/(V+D)]GFP::RAB-3 (C), for ventralGFP::RAB-3 (D), and for dorsalGFP::RAB-3 (E).Data representmean±SEM.

*p < 0.05, **p < 0.005 relative to wild-type, NS, not significant relative to cyy-1, Student’s t test. See the Supplemental Experimental Procedures for n numbers.

(F) Disassembled ventral synaptic components are reused for dorsal synapse formation during DD synaptic remodeling. Dendra2::RAB-3 in the DD2 ventral

process was locally activated by UV irradiation before the start of DD remodeling (F1, white-dotted box). Right after UV irradiation (30 mW, 20 s), the green

fluorescence from Dendra2::RAB-3 is photoconverted to red fluorescence (F2, white-dotted box). Photoconverted red fluorescent Dendra2::RAB-3 was

examined in the dorsal processes 8–10 hr after UV irradiation (around 26 hr time point, F4, arrows). Note that as a control, DD1 neuron, that has never been

photoconverted by UV, exhibits only green (F3), but not red (F4), fluorescent Dendra2::RAB-3 puncta in the dorsal process 8–10 hr after UV irradiation. Schematic

diagrams were illustrated in (F5). Scale bars, 20 mm.
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those in cdk-5 resulted from the failure of the transportation of

the disassembled ventral GFP::RAB-3 to the dorsal side. There-

fore, it predicts that the ectopic ventral GFP::RAB-3 in cyy-1, but

not in cdk-5, might represent functional presynaptic and post-

synaptic specializations. To test this, we first examined whether

the ectopic ventral GFP::RAB-3 puncta in cyy-1 or cdk-5 coloc-

alize with an active-zone protein SYD-2. Consistent with our

prediction, the ectopic ventral GFP::RAB-3 in cyy-1, but not in

cdk-5, mutants shows a high degree of colocalization with

mCHERRY::SYD-2 (Figures 6A and 6B). These results indicate

that the ectopic RAB-3 puncta in cyy-1, but not cdk-5, mutants

might represent presynaptic specializations.

To further address the functionality of GFP::RAB-3 puncta, we

tested if the ventral GFP::RAB-3 labeled synaptic vesicles in

cyy-1, but not cdk-5, mutants undergo exocytosis. Mutations

in unc-13 genes have been reported to have defects in the

exocytosis of synaptic vesicles (Brose et al., 2000) and lead

to excessive accumulations of RAB-3 at functional presynaptic

terminals (Ch’ng et al., 2008). It is conceivable that such an

effect of unc-13 mutants would not occur in nonfunctional pre-

synaptic sites. Consistently, we found that the unc-13(e450)

mutation causes increased intensity of GFP::RAB-3 puncta in

DD neurons compared to wild-type background (data not

shown). We next generated unc-13; cyy-1 and unc-13; cdk-5

double mutants. The ventral GFP::RAB-3 puncta in unc-13;

cyy-1 double mutants are brighter compared to cyy-1 alone

(Figures S5A and S5B), implying that the ventral GFP::RAB-3

puncta in cyy-1 single mutants might represent functional

presynaptic specializations. However, the ventral GFP::RAB-3

puncta in unc-13; cdk-5 double mutants show similar intensity

compared to cdk-5 alone (Figures S5C and S5D), indicating

that the ventral GFP::RAB-3 puncta in cdk-5 single mutants

are not likely functional presynapses. As internal controls, dorsal

GFP::RAB-3 puncta both in unc-13; cyy-1 and unc-13; cdk-5

double mutants are brighter compared to cyy-1 and cdk-5 alone,

respectively (Figure S5).

To further clarify the identities of ectopic RAB-3 puncta in

cyy-1 and cdk-5, we askedwhether the ectopic puncta are asso-

ciated with postsynaptic specializations. In wild-type animals,

the GABAergic presynaptic SNB-1/synaptobrevin from the DD

and VD neurons juxtaposes postsynaptic UNC-49/GABA recep-

tors in the dorsal and ventral cord, respectively (Gally and

Bessereau, 2003). A lin-6 mutation that was shown to eliminate

the VD neurons (Hallam and Jin, 1998) facilitates our analysis

of the DD ectopic RAB-3 puncta in the ventral side of the animal.

We found that ectopic ventral presynaptic SNB-1/Synaptobrevin

puncta in cyy-1, but not cdk-5, mutants exhibit a high degree of

colocalization with postsynaptic UNC-49/GABA receptors

(Figures 6C and 6D). Taken together, these data indicate that

CYY-1, but not CDK-5, plays a role in synaptic vesicle elimination

from synaptic sites, and strongly support the differential func-
(G) Transportation of photoconverted ventral RAB-3 to the dorsal process is inh

Dendra2::RAB-3 at 8–10 hr after UV irradiation (F4) was normalized to the integrat

wild-type, cyy-1, or cdk-5mutant worms. Note that 59%of photoconverted ventra

Also, note that 95% of photoconverted RAB-3 fluorescence is recovered at 8–1

(white) was added in cyy-1 mutants. Note that only 8.4% of photoconverted vent

6 (from left to right). *p < 0.05 and **p < 0.005 relative to wild-type, Student’s t te
tions of CYY-1 and CDK-5 in synapse elimination and new

synapse formation, respectively.

CDK-5 and UNC-104/Kinesin3 Act Together
to Transport Synaptic Components to the New Dorsal
Synaptic Sites during DD Synaptic Remodeling
To further understand how synapticmaterial is transported to the

dorsal axon during DD remodeling, we examined the role of

UNC-104/Kinesin3, a kinesin motor, in this process. UNC-104

is a well-known motor protein required for axonal transport

(Hall and Hedgecock, 1991; Bloom, 2001; Klopfenstein and

Vale, 2004; Pack-Chung et al., 2007; Niwa et al., 2008). To test

if UNC-104/Kinesin3 is required for remodeling of DD synapses,

we examined the remodeling process in unc-104(e1265)

mutants. Interestingly, in L1-staged animals before remodeling

(16 hr), GFP::RAB-3 localizes to the ventral process in

unc-104(e1265) mutants (Figure S6A, A1), similar as in the

wild-type worms. However, this distribution pattern remains

unchanged during the remodeling time points (Figure S6A, A1–

A3), and no dorsal puncta were ever observed in L2 or older

animals, suggesting that the remodeling process completely

fails in the unc-104(e1265) mutants.

We next tested if overexpressing UNC-104/Kinesin3 acceler-

ates the remodeling process. Indeed, almost all worms overex-

pressing UNC-104/Kinesin3 exhibit accelerated accumulation

of dorsal GFP::RAB-3 puncta (Figure 7A, D insets of A4–A6;

Figure 7C, yellow-lined gray-filled), a phenotype similar to that

seen in the transgenic worms overexpressing CDK-5 (Figure 3D,

yellow-lined gray-filled). The similarity of loss- and gain-of-func-

tion phenotypes between cdk-5 and unc-104 suggests that

CDK-5 and UNC-104 affect similar aspects of the remodeling

process.

To further understand the relationship between CDK-5 and

UNC-104, we overexpressed UNC-104 in the cdk-5 mutant

background. We found that UNC-104 overexpression signifi-

cantly rescues the cdk-5 mutant remodeling phenotype at all

time points, suggesting that UNC-104 might function down-

stream of or in parallel to CDK-5 (Figure 7C, purple compared

to green). In order to determine if the overexpression of

UNC-104 completely bypasses the requirement for CDK-5,

we compared the intensity of the dorsal RAB-3 fluorescence

in Ex[DD::UNC-104] cdk-5(+) and Ex[DD::UNC-104] cdk-5(-)

animals. Although dorsal GFP::RAB-3 puncta were apparent

in both genetic backgrounds, it appeared that the intensity of

the new dorsal GFP::RAB-3 puncta was dramatically lower in

the cdk-5(-) background, indicating that CDK-5 facilitates the

activity of UNC-104 (Figure 7A, compare D insets of A7 and A8

to those of A4 and A5; quantified in Figure 7B). Consistent with

our model, the intensity of new dorsal GFP::RAB-3 puncta in

Ex[DD::UNC-104] cyy-1(-) animals did not exhibit significant

difference (average intensity of dorsal GFP::RAB-3, normalized;
ibited in cyy-1 and cdk-5 mutants. The integrated intensity of photoconverted

ed intensity of photoconverted Dendra2::RAB-3 right after UV irradiation (F2) in

l RAB-3 are reused for new synapse formation in the dorsal process (wild-type).

0 hr after UV when the fluorescence in the ventral (black) and dorsal process

ral RAB-3 is transported to the dorsal process in cdk-5 mutants. n = 10, 5, and

st.
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Figure 6. Ectopic Ventral RAB-3 or SNB-1 Puncta in cyy-1, but Not in cdk-5, Mutants Colocalize with Active-Zone SYD-2 Proteins and

Postsynaptic UNC-49/GABA Receptors

(A) GFP::RAB-3 and mCHERRY::SYD-2 are coexpressed in wild-type (left), cyy-1 (middle), or cdk-5 mutant background (right). Note the high degree of

colocalization of ventral GFP::RAB-3 with mCHERRY::SYD-2 in cyy-1, but not cdk-5, mutants. Ventral regions are magnified (white-dotted boxes). Arrows

indicate ventral RAB-3 overlapping with SYD-2. Arrowheads show ventral RAB-3 nonoverlapping with SYD-2. Imaged at the stage of L4. Scale bars, 20 and

10 mm for low- and high-magnification images, respectively.

(B) The percentage of ventral GFP::RAB-3 puncta overlapping with mCHERRY::SYD-2 was quantified. Data represent mean ± SEM (n = 196 and 183 ventral

GFP::RAB-3 puncta from 14 and 11 worms for cyy-1 and cdk-5, respectively). **p < 0.0001, Student’s t test.

(C) Ectopic ventral SNB-1/synaptobrevin puncta of DD neurons in cyy-1mutants colocalize with UNC-49/GABA receptors of the ventral body muscle. krIs1 strain

(Gally and Bessereau, 2003) was used to label presynaptic SNB-1/synaptobrevin and postsynaptic UNC-49/GABA receptors simultaneously in wild-type, lin-6,

lin-6; cyy-1, or lin-6; cdk-5mutant background. Note the high degree of colocalization of ventral SNB-1::CFPwith UNC-49::YFP in lin-6; cyy-1, but not lin-6; cdk-5,
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Figure 7. CDK-5 and UNC-104/Kinesin3 Act Together to Form New Dorsal Synapses during DD Remodeling

(A and B) UNC-104-mediated dorsal synapse formation is inhibited in the absence of CDK-5. Note the much-reduced GFP::RAB-3 intensity in the dorsal

processes in the absence of CDK-5 (D insets of A7 and A8) compared to that in the presence of CDK-5 (D insets of A4 and A5). D, dorsal processes; V, ventral

processes; Scale bars, 20 mm. Average intensity of dorsal GFP::RAB-3 was quantified during 16–19.5 hr time points (B). Data represent mean ± SEM; n = 26 and

16 (from left to right). **p < 0.0005 compared to wild-type, Student’s t test.

(C) Quantification as described in the Figure 2D legend. **p < 0.005, ns, not significant relative to wild-type; ##p < 0.005 relative to cdk-5, Fisher’s exact test.

Symbols for statistics are labeled inside of the gray-filled and above the black-filled bars for the phenotypes of ‘‘V+D’’ and ‘‘only D,’’ respectively. See the

Supplemental Experimental Procedures for n numbers. See also Figure S6.
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1.1 ± 0.12, n = 15) compared to Ex[DD::UNC-104] cyy-1(+)

animals (average intensity of dorsal GFP::RAB-3, normalized;

1.0 ± 0.06, n = 26). We found that during DD remodeling, fluores-

cently tagged CDK-5 and UNC-104 both exhibit punctate local-

ization patterns and colocalize in the V+D (Figure S6C) as well as

the commissures (Figure S6D). Furthermore, when we overex-

pressed CDK-5 in the unc-104(e1265) background, all

GFP::RAB-3 was located in the ventral processes and cell

bodies (Figure S6A, A4–A6), just as in the unc-104(e1265) single

mutant (Figure S6A, A1–A3). Again, these data support the

model that UNC-104 is an essential motor protein needed for

the transport of synaptic material to the dorsal processes and

that CDK-5 facilitates the UNC-104-mediated transport of
mutants. Ventral regions are magnified (white-dotted boxes). Arrows show ventra

nonoverlapping with UNC-49 signals. Imaged at the stages of L3 to young adult. S

(D) The percentage of ventral SNB-1::CFP puncta overlapping with UNC-49::YFPw

for lin-6; cyy-1 and lin-6; cdk-5, respectively). **p < 0.0001, Fisher’s exact test.
synaptic components to the dorsal sites of new synapse

formation.

UNC-104 and Dynein Motors Act Sequentially to
Properly Localize Synaptic Vesicles along the Dorsal
Process in DD Synaptic Remodeling
When we closely examined the localization of GFP::RAB-3 in the

dorsal process, we uncovered an intriguing interplay between

the anterograde and retrograde motors during this remodeling

event. We found that in 27% of the wild-type worms,

GFP::RAB-3 fluorescence first accumulated at the most distal

ends of the DD neurons at around the 20–22 hr time points (Fig-

ure 8A, upper image; Figure 8E). Subsequently, fluorescence
l SNB-1 overlapping with UNC-49 puncta. Arrowheads indicate ventral SNB-1

cale bars, 20 and 10 mm for low- and high-magnification images, respectively.

as quantified (n = 82 and 61 ventral SNB-1::CFP puncta from 17 and 15worms
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Figure 8. UNC-104 andDyneinMotor Proteins Act Temporally to Properly Pattern the Synapses along theDorsal Process during DDSynaptic

Remodeling

(A) UNC-104 transports synaptic vesicles toward both anterior and posterior ends of dorsal processes during DD synaptic remodeling. In wild-type worms,

synaptic vesicles labeled by GFP::RAB-3 are transported to both the anterior and posterior ends of dorsal processes (20–22 hr, upper), and then redistribute

evenly along the processes (26 hr, lower) during the remodeling.

(B and C) Overexpression of UNC-104 in DDs directs GFP::RAB-3 accumulated in the anterior and posterior ends of dorsal processes (B) during the remodeling.

However, in unc-104(e1265) mutants the transport of GFP::RAB-3 to the dorsal process is completely blocked (C).

(D) In dhc-1(js319)mutants, GFP::RAB-3 accumulates in both anterior and posterior ends of dorsal process, even at 26 hr time point. Arrows indicate the location

of commissures. Brackets mark the length of dorsal axons of individual DD neurons. Scale bars, 20 mm.

(E) Schematic diagram for both anterior and posterior end-accumulation phenotype that is examined in (A, 22 hr), (B), and (D), and is quantified in (F).

(F) Quantification of the phenotype for the end accumulation of GFP::RAB-3 as in (E). n = 136, 99, 70, 106, 64, and 57 (from left to right). **p < 0.0001 compared to

wild-type, 26 hr; ##p < 0.001, NS, not significant compared to dhc-1, 26 hr, Fisher’s exact test.

(G) Schematic diagram for the roles of twomotor proteins, UNC-104 andDynein, for synapse formation during DD synaptic remodeling. Straight gray lines, dorsal and

ventral processes; curvedgray line, commissure;grayoval,cell body.Transportdirectionsare indicatedbyblackandgrayarrows forUNC-104andDynein, respectively.
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became evenly redistributed along the dorsal processes at

around the 26 hr time point (Figure 8A, lower image), suggestive

of a two-step trafficking process during DD remodeling: (1) early

anterograde trafficking of synaptic vesicles from the ventral

process all the way to the anterior and posterior ends of the

dorsal process, and (2) late retrograde movement that results

in the even distribution pattern of synaptic vesicles along the

dorsal process.

Interestingly, we found that overexpression of UNC-104 led to

dramatic, fully penetrant accumulation of GFP::RAB-3 at the

distal ends of the dorsal process, even at the 26 hr time point

(Figures 8B, 8E, and 8F), while loss-of-function mutants of

UNC-104 showed a complete block of dorsal delivery of

GFP::RAB-3 (Figure 8C).

As shown in Figure 8A, the accumulation of GFP::RAB-3 at

both ends is transient, and fluorescence was then redistributed

along the entire dorsal axon in a punctate pattern, similar to

the pattern observed in adult animals. Because an anterograde

motor UNC-104 directs GFP::RAB-3 to both ends of the dorsal
754 Neuron 70, 742–757, May 26, 2011 ª2011 Elsevier Inc.
processes, we hypothesized that a retrograde motor Dynein

might be responsible for the redistribution of GFP::RAB-3 by

delivering the end-accumulated GFP::RAB-3 toward the oppo-

site direction to UNC-104.

To test this hypothesis, we disrupted the function of Dynein

using a loss-of-function allele of dynein, dhc-1(js319), which

has been shown to result in an accumulation of SNB-1/synapto-

brevin at the tips of mechanosensory neuronal processes

(Koushika et al., 2004). Indeed, more than 50% of the dhc-1

mutants accumulated GFP::RAB-3 proteins in the distal ends

of dorsal processes during remodeling (Figures 8D and 8F).

This end-accumulation phenotype of GFP::RAB-3 in dhc-1

mutants is inhibited in dhc-1; cdk-5, but not in dhc-1; cyy-1,

double mutants (Figure 8F), indicating that CDK-5, but not

CYY-1, contributes to the end accumulation of GFP::RAB-3.

These data further support that CDK-5 and UNC-104 act

together in the process of new dorsal synapse formation

during DD remodeling. Taken together, we propose that two

different microtubule motors interplay temporally for proper
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localization of new synapses during the remodeling process

(Figure 8G).

DISCUSSION

In the present study, our data showed that destruction of existing

synapse is regulated by a cyclin box-containing protein CYY-1.

The disassembled synaptic components are then transported

to the dorsal processes of DDs by an axonal transport motor

UNC-104/Kinesin3. In the absence of CDK-5, dorsal synapse

formation during remodeling is significantly delayed, possibly

also due to insufficient activation of UNC-104/Kinesin3-medi-

ated axonal transport. Once CDK-5 and UNC-104/Kinesin3

bring the synaptic components to the dorsal axon through the

commissure, the synaptic components are finally positioned at

the proper synaptic locations by dynein complexes (Figure S7).

Concurrent Synapse Elimination and New Synapse
Formation during DD Remodeling
The stereotyped reversal of synaptic connectivity of DD moto-

neurons during C. elegans development has long been consid-

ered as an attractive model system to study synaptic plasticity

(White et al., 1978; Hallam and Jin, 1998). While it has been well

established that the ventral synapses in the L1 animal are eventu-

ally eliminated, and the new synapses are formed in the dorsal

axon, the relationship between synapse formation and elimina-

tion has not been well understood. By specifically labeling the

presynaptic terminals of the DD neurons and performing time

course experiments, we have been able to directly visualize the

remodeling process in vivo. Interestingly, we found that the elim-

ination of existing synapses and the formation of new synapses

occur simultaneously within a certain time window during the

DD remodeling process (Figure S1). This is analogous to many

observations made in the vertebrate systems. For example,

retinal ganglion axons form synapseswith tectal neurons through

a dynamic process characterized by concurrent synapse forma-

tion and elimination in the same presynaptic axon (Debski and

Cline, 2002; Ruthazer et al., 2006). In the well-studied vertebrate

neuromuscular junction, an initial stage of synapse formation

leads to each muscle fiber being innervated by multiple motor

axons, which is then followed by a period of synaptic competi-

tion, resulting in the mature monoinnervation pattern. During

the activity-driven competition, one of the motor axons gains its

innervation, while other axons lose their synaptic connections

to each particular muscle fiber, suggesting that synapse forma-

tion and elimination take place concurrently in the same postsyn-

aptic muscle (Lichtman and Colman, 2000).

Since constructing and deconstructing synapses happen

simultaneously in the same cell, it is conceivable that synaptic

components might be ‘‘reused’’ at new synapses. Indeed, our

experiments provide evidence that this might be true. We specif-

ically marked the synaptic vesicles at existing synapses, which

are destined for destruction, and the labeled vesicles were later

found at the new synaptic sites. These data further suggest that

synapse elimination might not be a total demolition of existing

synapses, but instead may be a controlled disassembly process

from which synaptic vesicles and synaptic proteins can be

potentially recycled for building new synapses.
CYY-1 and CDK-5 Are Key Players for Structural
Plasticity in the DD Neurons
The stereotyped structural rearrangement of the DD neurons

provides an opportunity to study coordinated synapse elimina-

tion and synapse formation in the same cells in vivo. This remod-

eling process is regulated by the heterochronic gene lin-14,

which controls the timing of stage-specific cell lineages in

C. elegans (Ambros and Horvitz, 1984, 1987; Ambros and

Moss, 1994). In loss-of-function mutants of lin-14, DD neurons

remodel precociously, suggesting that LIN-14 suppresses the

initiation of the remodeling process (Hallam and Jin, 1998).

Our loss-of-function and gain-of-function genetic analyses

suggest that the CYY-1 and CDK-5 are essential for the synaptic

remodeling process. In either single mutant, the DD remodeling

process becomes delayed and incomplete. In double mutants

lacking both CYY-1 and CDK-5, the remodeling is almost

completely blocked. Overexpression of CYY-1 and CDK-5 leads

to precocious remodeling, suggesting that they are both neces-

sary and might also instruct the initiation of remodeling. A critical

experiment to distinguish the permissive and instructive nature

of these genes is to ask if remodeling can be restored at a very

different time during development by artificial expression of

these two genes. Surprisingly, in the cyy-1 cdk-5 doublemutants

in which the synaptic remodeling is more or less completely

blocked, the induced expression of both genes at mid-L3,

a stage long after the endogenous remodeling time, was able

to dramatically reinstate the remodeling process. This result

strongly suggests that the remodeling program is halted in the

double mutants, ‘‘waiting’’ for the expression of CYY-1 and

CDK-5. As such, CYY-1 and CDK-5 together can drive the re-

modeling process. It is likely that the endogenous expression

or activities of these two genes are regulated during the initiation

and progression of the remodeling process. It will be interesting

to determine whether LIN-14 regulates the timing of remodeling

through CDK-5 or CYY-1.

Regulation of Axonal Transport as Key Components
in Neural Plasticity
Since synapse formation often occurs in the distal axon, far away

from the cell body where many synaptic organelles and proteins

are generated, it is conceivable that the transport of synaptic

material to the synaptic sites can be the rate-limiting step in

synapse formation. Indeed, several studies have shown that the

regulation of anterograde microtubule-mediated transport is

a keystep in synapticplasticity. For example, in thegill-withdrawal

reflex circuit of Aplysia, the induction of long-term facilitation

requires upregulation of kinesin heavy chain (Puthanveettil et al.,

2008). In another study, the kinesin family member 5B (KIF5B)

motor and its adaptor syntabulin were shown to be required for

the formation of new presynaptic boutons during activity-depen-

dent synaptic plasticity in hippocampal neurons (Cai et al., 2007).

During the remodeling of DD synaptic connectivity, we found

that the anterograde motor UNC-104/Kinesin3 is absolutely

required for the formation of new synapses. CDK-5 likely

promotes new synapse formation by stimulating UNC-104.

Intriguingly, we found that a retrograde motor, the dynein com-

plex, is also required for synapse formation. During the normal

remodeling process, synaptic vesicles transiently accumulate
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at the terminals of DD axon but later redistribute along the entire

axon through dynein activity. In the dynein heavy-chain mutants,

this redistribution step is disrupted (Figure 8D). It is likely that

temporal regulation of motor activity is required to generate the

dynamic behavior. For example, it is conceivable that the

UNC-104-mediated anterograde transport dominates in early

stages of the remodeling process, driving synaptic material to

the anterior and posterior ends of the dorsal DD processes.

Then, at later time points, the retrograde motor is now activated,

which distributes the synaptic material along the entire dorsal

axon. These data suggest that both UNC-104/Kinesin3 and the

dynein complex are required for the appropriate formation of

new synapses during the rewiring of DD synapses.

Do CYY-1 and CDK-5 Play Different Functions
in Different Neurons?
In a recent study, we reported the function of CYY-1 and CDK-5

in the DA9 neuron, which does not undergo dramatic structural

rearrangement of its synapses. There are interesting similarities

and differences between the phenotypes in the DDs and in the

DA9 that raise the question whether these molecular pathways

play similar or distinct roles in patterning synaptic material in

different cell types.

The similarity is apparent. In the cyy-1 cdk-5 double mutants,

presynaptic material, including synaptic vesicles and active-

zone proteins, dramatically mislocalizes to dendrites in both

DDs and DA9. However, the mislocalization in the DD neurons

results from a failure of synaptic remodeling since synaptic local-

ization in L1 is normal. On the contrary, the DA9 mislocalization

phenotype is evident as soon as its dendrite is born, arguing

that CYY-1 and CDK-5 in DA9 are required at different time

points (Ou et al., 2010). Despite the phenotypic similarity

between the two cell types, detailed analysis reviewed three

major differences. First, mutations in dhc-1 and other constitu-

ents of the cytoplasmic dynein complex dramatically suppress

the dendritic mislocalization of presynaptic components in

DA9, suggesting that dynein-mediated retrograde transport is

a major downstream pathway for CYY-1 and CDK-5 in DA9

(Ou et al., 2010). However, the same dhc-1 mutation only subtly

suppresses the DD phenotype of the cyy-1 cdk-5 double

mutants, suggesting that additional downstream pathways are

required in the remodeling process (data not shown).

Second, the functions of CDK-5 appear to be different in these

two cell types. Loss of cdk-5 results in marked increase in the

number of both retrograde and anterograde-trafficking events

in the DA9 axons, arguing that CDK-5 does not likely promote

anterograde trafficking (Ou et al., 2010). On the hand, CDK-5

facilitates UNC-104-mediated anterograde traffic during the

DD remodeling process. Considering the numerous target

substrates of CDK-5, it is conceivable that CDK-5 also facilitates

anterograde trafficking, but this effect is masked by its effect in

suppressing retrograde transport. Third, the cyy-1-activated

PCTAIRE kinase, PCT-1, plays a more important role in DA9

than in DDs because loss of pct-1 alone causes a full penetrant

phenotype in DA9 (Ou et al., 2010), but not in DDs (data not

shown). Further understanding of the molecular downstream

players in the CYY-1 and CDK-5 pathway will elucidate the simi-

larity and differences in these two cells.
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EXPERIMENTAL PROCEDURES

Strains and genetics, molecular biology, heat-shock experiment, and confocal

imaging are described in the Supplemental Experimental Procedures.

Staging and Analysis

To precisely synchronize the worms at a stage, gravid adult worms were

collected and allowed to lay eggs for 1 hr at 25�C. Eggs were placed at

25�C to develop for appropriate duration, mainly 11, 16, 18, 19.5, 22, and

26 hr for each experimental purpose. Then, the phenotype of DD synaptic re-

modeling was examined. We did not notice any obvious egg-laying abnormal-

ities for the mutant and transgenic strains we have used for our analysis.

Local Photoconversion of Dendra2::RAB-3

L1 worms around 16–18 hr after egg laying (i.e., before starting synaptic

remodeling) were sampled under a coverslip in Levamisole (1 mM; Sigma).

Worms expressing Dendra2::RAB-3 were identified by the expression of coin-

jection marker Podr-1::dsred. Dendra2::RAB-3 puncta in the DD2 ventral

process were locally photoconverted using a 405 nm laser at 30 mW power

for 20 s through 633 objective (NA 1.4). Eight to 10 hr after UV irradiation, pho-

toconverted red fluorescent signals were examined and quantified.

Image Analysis and Quantification

Tomeasure the average fluorescence intensity, the V+D of DD neuronswithout

the cell bodies were carefully traced, and the background intensity was

subtracted from the intensity in the traced regions using ImageJ. The ratio of

[D/(V+D)] GFP::RAB-3 was calculated by the following formula: average inten-

sity of dorsal GFP::RAB-3/(average intensity of ventral GFP::RAB-3 + average

intensity of dorsal GFP::RAB-3).

For the analysis of photoconverted experiment, the integrated intensity of

photoconverted red fluorescence of RAB-3 in the ventral (V) and the dorsal

(D) process at 8–10 hr after UV irradiation was normalized to the integrated

intensity of photoconverted red fluorescence of RAB-3 in the ventral process

right after UV irradiation. For other detailed descriptions of image analysis and

quantification, see Supplemental Experimental Procedures.

Electron Microscopy

DD neurons were reconstructed and analyzed from N2 wild-type and

cyy-1 cdk-5 animals as previously described (Ou et al., 2010). DD neurons

were identified by their position and orientation within the dorsal nerve cord.

A varicosity was defined as a series of profiles with an area larger than

10,000 nm2, regardless of the existence of dense projections. Detailed

methods are provided in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/j.

neuron.2011.04.002.
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