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Roles of SNARE Proteins in Synaptic 
Vesicle Fusion
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Abstract Neurotransmitters are stored in small membrane-bound vesicles at 
synapses. Neurotransmitter release is initiated by depolarization of the neuron, 
which in turn activates voltage-gated calcium channels. Calcium influx then trig-
gers the fusion of the synaptic vesicles with the plasma membrane. Fusion of the 
vesicular and plasma membranes is mediated by SNARE (soluble N-ethylmaleimide–
sensitive factor attachment receptor) proteins. The SNAREs are now known to be 
used in all trafficking steps of the secretory pathway, including neurotransmission. 
This chapter describes the discovery of the SNAREs, their relevant structural 
features, models for their function, the specificity of interactions, and their interactions 
with the calcium-sensing machinery.
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36 M.T. Palfreyman, E.M. Jorgensen

SNARE Discovery: A Convergence of Genetics 
and Biochemistry

To understand the mechanisms of synaptic vesicle fusion, it is useful to think about 
the evolution of neurotransmission. Eukaryotic cells separate cellular functions into 
membrane-bound organelles. The content of these organelles are moved between 
compartments and the extracellular environment by transport vesicles. Cellular com-
partments must be kept distinct, but membrane-impermeable cargo must be trans-
ferred to the target organelle. To transfer cargo the lipid bilayers of the vesicle and 
the target must merge so that their luminal contents can intermingle. In some cases, 
cargo must be secreted into the extracellular space via exocytosis. It was perhaps a 
small step for the cell to develop a mechanism for calcium-dependent regulation of 
exocytosis, but it was a giant leap for evolution. The nervous system is arguably the 
universe’s greatest invention.

A convergence of independent tracks led to the identification of SNAREs as the 
central players in membrane fusion. In the late 1980s SNARE proteins were 
identified in the brain as components of the synapse. Specifically, synaptobrevin 
(also called vesicle-associated membrane protein [VAMP]) was purified from syn-
aptic vesicles (1). Subsequently, two additional SNAREs, syntaxin and SNAP-25 
(synaptosome-associated protein of 25 kDa), were found localized to the plasma 
membrane of neurons (2–4). The identification of homologues among the yeast sec
genes linked the mechanisms of synaptic function to vesicular trafficking (5,6) and 
hinted at the universality of membrane fusion. Although the SNARE proteins were 
well placed to mediate synaptic vesicle fusion and were related to proteins required 
for trafficking, there was at this point no evidence that these proteins functioned in 
calcium-dependent exocytosis of synaptic vesicles.

The groups of Heiner Niemann, Reinhard Jahn, and Cesare Montecucco were 
looking for the targets of the clostridial toxins. The clostridial toxins from the 
anaerobic bacteria Clostridium botulinum and Clostridium tetani can potently 
inhibit neurotransmission (7). Thus, it was reasoned that their targets would iden-
tify essential proteins in synaptic transmission. Botulinum and tetanus toxins cleave 
the SNARE proteins, demonstrating the central role of the SNAREs in synaptic 
vesicle release (8–11). These were the first functional data that the SNAREs were 
involved in neurotransmission (12,13). The central role of the SNAREs in neuro-
transmission would later be confirmed from electrophysiologic studies on null 
mutants in the SNARE proteins in Drosophila, mice, and Caenorhabditis elegans
(14–19). Thus, the functional data identified the SNAREs as perpetrators but their 
association had not been described.

The discovery that these proteins formed a complex was demonstrated soon 
after. Jim Rothman’s group was taking a biochemical approach to understand traf-
ficking in the Golgi apparatus. The toxin N-ethylmaleimide (NEM) potently inhib-
its Golgi trafficking (20). Wilson et al (21) found that the target of NEM was the 
mammalian homologue of a previously cloned yeast gene SEC18 (22). Rothman’s 
group named this new protein the NEM-sensitive factor (NSF) (23), and NSF was 
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3 Roles of SNARE Proteins in Synaptic Vesicle Fusion 37

found to bind, via the action of the soluble NSF adaptors (SNAPs) (24), to a set of 
proteins from brain detergent extracts that came to be collectively known as the 
soluble N-ethylmaleimide–sensitive factor attachment receptor proteins (SNAREs). 
The evidence for SNARE involvement in synaptic vesicle exocytosis was now 
overwhelming, but a list of names in a complex did not constitute a model.

The first coherent model, called the SNARE hypothesis, would arise from the 
melding of the genetic and biochemical observations described above. Although 
wrong in detail, it would catalyze a number of hypothesis-driven experiments that 
would lead to more accurate models. Based on the finding that unique SNAREs are 
found at each of the trafficking steps (25,26), Thomas Söllner and Jim Rothman 
proposed that SNARE interactions provided the specificity for vesicular trafficking 
by tethering the vesicle to its target membrane (27,28). The SNAREs would then 
be acted on by the adenosine triphosphatase (ATPase) NSF which, by disassem-
bling the SNAREs, would drive fusion (27,29).

Further experiments from Bill Wickner’s lab, using a purified vacuole fusion 
assay, demonstrated that NSF acted not at the final step of fusion, but rather to 
recover monomeric SNAREs for use in further rounds of fusion (28,29,30,31). NSF 
was acting as a chaperone to separate the embracing SNAREs on the plasma mem-
brane to reactivate the system for further fusion (32,33). Thus assembly of the 
SNAREs, not disassembly, catalyzes fusion.

Finally, Rothman’s group demonstrated that the SNAREs alone could fuse mem-
branes. The SNAREs were incorporated into vesicles composed of artificial lipid 
bilayers. Donor vesicles containing synaptobrevin were capable of fusion with 
acceptor vesicles containing syntaxin and SNAP-25 (34). This experiment was 
extended to native membranes by engineering SNAREs to face out of the cell; in 
this configuration the SNAREs could induce fusion of whole cells (35). Thus, the 
current thinking is that the SNAREs function in the final steps in fusion and repre-
sent the minimal fusion machinery.

In the following sections we briefly define the steps leading to fusion, introduce 
the structure of the SNARE proteins, present a model for fusion, discuss SNARE 
specificity, and finally touch on the regulation of the SNARE complex by other 
proteins.

Definitions: The World Turned Upside 
Down and Given a Good Shake

In the past, synaptic vesicles were thought to dock with the plasma membrane, and 
then undergo a maturation step in which they became release ready. Depolarization 
activated a calcium sensor that then allowed the vesicle to fuse with the plasma 
membrane. Only a subset of docked vesicles were considered to be in the readily 
releasable pool (36). Thus, the life of a vesicle could be divided into four steps: 
docking, maturing to release-ready, calcium sensing, and fusing. The definition of 
these stages in vesicle fusion relied on morphologic and electrophysiologic criteria. 
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38 M.T. Palfreyman, E.M. Jorgensen

Current studies have sought to associate these pools with particular molecular inter-
actions and thereby more precisely define these states.

Paradoxically, recent studies have tended to confuse rather than clarify the states 
of a vesicle. Although some have argued that very few docked vesicles are in the 
readily releasable pool (36,37), others suggest that docked vesicles are equivalent 
to the readily releasable pool (38–41). Studies of SNARE proteins have also mud-
died our previously clean definitions of these pools. The assembly of SNARE pro-
teins between synaptic vesicle and plasma membrane is defined as vesicle 
“priming.” Initial studies suggested that priming occurred after docking (15). 
However, recent studies suggest that the primed state may correspond to “docked” 
vesicles as observed in electron micrographs (14). Thus, the morphologic, electro-
physiologic, and molecular definitions have seemingly converged on a single state. 
It is hoped that as the actions of various proteins are more precisely understood, we 
will once again refine synaptic vesicle fusion into discrete steps.

There is one last sorry note concerning our attempts to define steps in vesicle 
fusion: the terminology used for synaptic vesicle fusion is at odds with the terminol-
ogy used in yeast. In yeast, priming” refers to the generation of free SNAREs rather 
than the formation of the SNARE complex, tethering rather than docking describes 
the initial membrane association, and docking includes SNARE engagement. Only 
the word fusion seems to mean the same thing in these different languages.

Molecular Characteristics of the SNAREs

The SNARE proteins are characterized by a conserved 60- to 70-amino-acid SNARE 
motif. Phylogenetic analysis indicates that SNARE proteins can be divided into four 
families (25,42,43). The individual SNARE motifs are largely unstructured in solution, 
but when all four family members are mixed, the SNARE motifs come together to form 
a four-helix parallel bundle known as the core complex (Fig. 3.1A,B) (44). The SNARE 
complex is remarkably stable and can only be separated by boiling in the presence of 
sodium dedocyl sulfonate (SDS) (45,46). The hydrophobic residues of the alpha-helical 
SNARE motifs are oriented inward to form layers like those in the coiled coil domains 
of classical leucine zippers. However, the layer in the middle of the complex, called the 
“0” layer, is formed by ionic interactions between an arginine (R-SNARE) and three 
glutamines (Qa, Qb, and Qc SNAREs) (Fig. 3.1B,C). The role for these conserved resi-
dues buried in the hydrophobic core is briefly discussed in the next section. At each 
fusion site a unique SNARE complex consisting of all four flavors is formed. While 
other complexes have been observed in vitro, the only complexes that have been shown 
to efficiently support fusion are QabcR complexes (47–52).

The SNAREs that are used for synaptic vesicle exocytosis are synaptobrevin 
(R-SNARE, also called VAMP2), syntaxin 1a (Qa SNARE), and SNAP-25 (con-
tains both the Qb and Qc SNARE motifs) (Fig. 3.1) (1–4,53).

In addition to the SNARE motifs, all three SNAREs contain sequences that 
anchor them to the membrane (Fig. 3.1A). Syntaxin and synaptobrevin are anchored 

Wang_Ch03.indd 38Wang_Ch03.indd   38 5/15/2008 5:27:12 PM5/15/2008   5:27:12 PM



3 Roles of SNARE Proteins in Synaptic Vesicle Fusion 39

Fig. 3.1 Molecular description of the SNAREs. By assembling into a four-helix parallel bundle, 
the SNAREs bridge the gap between the two membranes destined to fuse. (a) In the case of the 
neuronal SNAREs, syntaxin (red) and SNAP-25 (green) are found on the plasma membrane and 
synaptobrevin (blue) is associated with the synaptic vesicle. The 60- to 70-amino-acid SNARE 
motifs form a four-helix bundle. Syntaxin and synaptobrevin contribute one SNARE motif and 
SNAP-25 contributes two. Syntaxin contains an additional regulatory domain composed of three 
alpha-helices called the Habc domain. Syntaxin and synaptobrevin are transmembrane proteins, 
while SNAP-25 is attached to the membrane via palmitoylation of the linker region. (b) The wire 
frame model shows the backbone of the SNARE motifs. The N-termini are at the left and the C-
termini are at the right, matching the illustration in (A). The amino acids facing toward the center 
of this helix (denoted as layers −7 to +8) are largely hydrophobic in nature with the notable excep-
tion of the zero layer. (c) In the zero layer charged residues are oriented toward the center of the 
helix. Syntaxin contributes one glutamine (Qa), SNAP-25 contributes two glutamines (Qb and 
Qc), and synaptobrevin contributes one arginine (R). (A: Courtesy of Enfu Hui and Edwin R. 
Chapman. B: Adapted from Fasshauer et al [40]. C: Adapted from Bracher et al [193].)

via transmembrane domains. SNAP-25 is anchored via the palmitoylation of 
cysteines in the linker region connecting the two SNARE motifs. In all SNARE-
based fusion reactions, each of the two membranes destined to fuse must contain a 
SNARE with a transmembrane domain; otherwise fusion will not occur (54). 

Wang_Ch03.indd 39Wang_Ch03.indd   39 5/15/2008 5:27:12 PM5/15/2008   5:27:12 PM



40 M.T. Palfreyman, E.M. Jorgensen

Synaptobrevin is located on synaptic vesicles, while syntaxin and SNAP-25 are on 
the plasma membrane. The assembly of synaptobrevin, syntaxin, and SNAP-25 into 
the SNARE complex would thus bridge the vesicle and plasma membrane, forming 
what is known as a trans SNARE complex (Fig. 3.1A).

Assembly and Disassembly Cycles in SNARE Function

The steps in the assembly of the trans SNARE complex are still in dispute. Based 
on biochemical experiments using the yeast SNAREs, it was proposed that homo-
logues of syntaxin (Sso1p) and SNAP-25 (Sec9p) might form an “acceptor com-
plex” (55) (Fig. 3.2). A syntaxin–SNAP-25 complex was also subsequently proposed 
for the neuronal SNAREs (56). This acceptor complex greatly speeds up the assembly 
of the core complex (57). However, it is not known whether this complex exists in
vivo. It has been shown that SNAP-25 and syntaxin can stably associate in cells (58). 
Specifically, a fluorescently tagged SNAP-25 generated an intramolecular fluores-
cence resonance energy transfer (FRET) signal upon assembly with syntaxin in 
PC12 cells.

This acceptor complex comprising one SNAP-25 molecule and one syntaxin mol-
ecule is highly reactive and will rapidly incorporate a second syntaxin molecule to 
form a dead-end Qaabc complex (55–58). This dead-end complex might be prevented 
in vivo by the action of tomosyn, a molecule with an R-SNARE domain (59,60). By 
occupying the synaptobrevin position in the complex, tomosyn might prevent the 
accumulation of the nonproductive Qaabc complexes and thus promote SNARE com-
plex formation (60,61). However, this model is not consistent with the largely inhibi-
tory role for tomosyn; genetic knockouts yield large increases in synaptic vesicle 
release (62,63). Tomosyn is thus more likely to bind to the acceptor complexes and, 
just like the Qaabc complexes, might form inactive complexes (62–64).

Fig. 3.2 Acceptor complex and zipper model for SNARE assembly. The Q SNAREs syntaxin and 
SNAP-25 assemble on the plasma membrane. This Qabc acceptor complex then contacts the 
distal N-terminus of synaptobrevin on the synaptic vesicle. This conformation is known as a 
“loose” SNARE complex. The “zippering” of the rest of the SNAREs into the complex serves two 
potential functions. First, full assembly of the SNAREs leads to close proximity between the 
membranes destined to fuse. Second, the zippering might provide torque that is transferred to the 
transmembrane domain leading to full fusion
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3 Roles of SNARE Proteins in Synaptic Vesicle Fusion 41

A second protein family that might serve to stabilize the acceptor complex is 
the SM (Sec1/Munc-18) family. At the synapse these proteins are called Unc18 
proteins (UNC-18 in C. elegans, Munc18 in mammals, and ROP in Drosophila). 
It was originally thought that Unc18 exclusively bound to syntaxin monomers 
(65–69). However, more recent experiments have suggested alternative modes of 
binding (70–73). When reconstituted into lawns of plasma membrane, Unc18 was 
displaced from syntaxin by synaptobrevin but only when SNAP-25 was also 
present (70). Unc18 might therefore stabilize a syntaxin/SNAP-25 acceptor com-
plex awaiting synaptobrevin (70). Nonetheless, it is still at present unclear how 
acceptor complexes are maintained or even whether they are true intermediates in 
core complex assembly. Indeed, synaptobrevin and syntaxin have been shown to 
assemble in vitro in the absence of SNAP-25 (74–76), suggesting that SNAP-25 
might join the complex last. It has even been suggested that syntaxin might be the 
last molecule to enter the core complex in vivo (77). Until SNARE assembly can 
be monitored in vivo, we are forced to rely on these studies of in vitro SNARE 
interactions.

Once synaptobrevin enters the complex it is proposed to make contact at the 
N-terminal portion of the SNARE domain distal from the membrane. This conformation 
of the SNAREs is termed a loose configuration and is then thought to zipper down 
to a tight conformation (Fig. 3.2). Synaptic vesicles are held in a release-ready state 
in which the trans SNARE complex is likely to be arrested in a partially zippered 
state. Calcium binding to synaptotagmin would release arrest so that the SNARE 
complex could fully zipper to the tight conformation. This transition to the tight 
conformation would pull the transmembrane domains of the SNAREs, and hence 
the membranes, into close proximity and induce fusion (78,79). Models for the 
action of SNAREs in membrane fusion are described below.

Once the two membranes have merged, the core complex is now located in a 
single membrane and is referred to as a cis SNARE complex. To undergo further 
rounds of fusion, this cis complex must be disassembled and the SNAREs repar-
titioned to their appropriate compartments. Disassembly is mediated by the 
action of NSF and the SNAPs. Together NSF and the SNAPs are able to disas-
semble all SNARE complexes thus far tested (80). The ATPase NSF itself does 
not directly bind SNAREs; instead, it binds SNAREs through the action of the 
SNAPs. The SNAPs bind to the surface of the cis SNAREs around the central 
zero layer, which contains the conserved Q and R residues (81). The disassembly 
of the mammalian core complexes in PC12 cells is inhibited by mutation in these 
conserved residues (82). However, the disassembly of the C. elegans core com-
plex is not affected by the same mutations (83). An alternative model for the 
function of these conserved residues is that they have a role before fusion in get-
ting the four helixes to align in register to ensure that their transmembrane 
domains are directly opposed at their C-terminal ends (42,78). It has also been 
proposed that they might function in the prevention of full SNARE zippering 
(77). The next section explores how the formation of these SNARE complexes 
might catalyze fusion.
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A Model for Membrane Fusion

Membranes do not spontaneously fuse, because of the high repulsive forces between 
two phospholipid bilayers 1 to 2 nm apart. How might the SNAREs fuse mem-
branes? Three characteristics of the SNAREs are central to the current models for 
their function in fusing membranes. First, the assembled SNARE complex is 
remarkably stable. The formation of the SNARE complex is therefore an energy 
source that can be used to overcome barriers to fusion. Second, the SNARE complex 
must consist of at least two SNARE molecules with transmembrane domains (84). 
The transmembrane domains must be inserted into both of the membranes destined 
to fuse (54). Third, the SNAREs assemble in a parallel orientation (44,78,79,85). 
Due to the parallel orientation of the SNARE motifs, SNARE assembly leads to the 
close apposition of the transmembrane domains and hence the membranes them-
selves. This section describes how the assembly of the SNARE complexes might 
lead the membranes through the sequential intermediates of a lipid stalk, a hemifu-
sion diaphragm, an initial fusion pore, and finally full fusion (Fig. 3.3).

The stability of the SNARE complexes combined with their parallel orientation 
led to the idea that their formation might provide the driving force for fusion. By first 
assembling at their N-terminals and subsequently “zippering” down to their membrane 
proximal C-terminals, the assembly of the SNAREs would bring the transmembrane 
domains of synaptobrevin and syntaxin into close proximity (77–79, 86–88) 
(Fig. 3.2). Evidence for zippering comes from two complementary experiments. 
First, biochemical and structural studies have shown that the membrane proximal 
domain of syntaxin becomes sequentially more ordered upon binding synaptobrevin 
in a directed N- to C-terminal fashion (55,57,87,89). The temperatures for assembly 
and disassembly of SNARE complex differ by as much as 10°C. Thus, assembly and 
dissociation follow different reaction pathways. This hysteresis suggests a kinetic 
barrier between folded and unfolded states (45). Mutations in the N-terminal hydro-
phobic core of the SNARE complex selectively slowed SNARE assembly, while 
those in the C-terminal did not slow assembly (56,87), suggesting that the N-terminal 
nucleates SNARE assembly. The kinetic barrier to assembly also suggests that loose 
SNARE complexes could be an intermediate.

The second line of evidence for zippering comes from in vivo disruption studies 
using clostridial toxins, antibodies directed toward the SNARE motifs, and muta-
tions in the hydrophobic core of the SNARE complex (77,86–88,90). The toxin and 
antibody disruption studies demonstrated that the N-termini of SNAREs become 
resistant to cleavage or antibody block at early stages, while C-termini are only resistant 
to disruptions at late stages. As a specific example, Hua et al injected either botulinum 
toxin D, which cleaves free synaptobrevin at the N-terminal side of the SNARE 
motif, or botulinum toxin B, which cleaves synaptobrevin toward the C-terminal 
side of the SNARE motif (88). SNAREs cannot be cleaved once they have assembled 
into the four helix SNARE complex (46). Exocytosis from the crayfish neuromus-
cular junction was not sensitive to cleavage at the N-terminus of the SNARE motif, 
suggesting that this region was protected, presumably by the SNARE complex. By 
contrast, neurotransmitter release was blocked by cleavage at the C-terminus of the 
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3 Roles of SNARE Proteins in Synaptic Vesicle Fusion 43

Fig. 3.3 A model for SNARE-mediated membrane fusion. The high repulsive forces between 
lipid membranes prevent them from fusing. The SNAREs are thought to provide the energy that 
enables the lipid rearrangements required for fusion. Pairing of the SNAREs brings the mem-
branes into close proximity and leads to the merger of the proximal leaflet of the membranes to 
form a lipid stalk. The lipid stalk can then expand into a hemifusion diaphragm. Fusion is likely 
to require the transfer of energy from the SNARE motif to the transmembrane domains. It is 
thought that the weakest points lie at the edge of the hemifusion diaphragm. A rupture in the 
membrane at one of these points leads to fusion of the distal leaflet of the membranes and com-
pletes the fusion process. Regions of negative lipid curvature are indicated by arrowheads in the 
stalk. (Courtesy of Enfu Hui and Edwin R. Chapman.)
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SNARE motif (86). Importantly, once the neuromuscular junction was electrically 
stimulated, botulinum toxin B was able to block exocytosis, demonstrating that the 
crayfish synaptobrevin monomers were indeed targets for the toxin. Thus, these 
data suggested that the N-terminus, but not the C-terminus, of synaptobrevin, is 
zippered into a SNARE complex in primed vesicles; presumably, calcium influx 
stimulates full zippering and membrane fusion.

As a second example, the mutations in the hydrophobic core of the SNARE 
complex have been expressed in neurosecretory chromaffin cells (87,90). Mutations 
in the C-terminal hydrophobic core incrementally reduced the kinetics of the rapid 
component of secretion, while those in the N-terminal reduced the sustained com-
ponent of release, which is thought to correspond to engagement of new SNARE 
complexes (87). Importantly, the N-terminal mutants did not change the kinetics of 
the fast or slow components of release, only the amplitude of the response. Thus, it 
was interpreted that the C-terminal mutations were slowing “zippering” while those 
in the N-terminal were disrupting nucleation of the SNARE complexes (87). By 
contrast, when SNAREs bearing mutations in the hydrophobic core were intro-
duced into the neurosecretory PC12 cells, there was no gradient in the efficacy of 
mutations in the kinetics of exocytosis (90).

The zippering of the membrane proximal portion of the SNARE complex 
likely serves two functions. First, the SNAREs are thought to catalyze the formation 
of a “hemifusion” transition state in which the proximal membrane leaflets have 
merged. This state can be achieved with comparatively low-energy requirements 
(91–94) and might simply need the SNAREs to bring the membranes into close 
proximity (95). Second, the SNAREs have been proposed to open up a fusion 
pore. This step requires the transmembrane domains of the SNAREs and likely 
involves the transfer of energy from the zippering of the SNARE cytoplasmic 
domains being passed to the transmembrane domain in order to locally disrupt 
lipid membranes (96).

Inspired by experiments in viral fusion and modeling of lipid bilayers, it is pro-
posed that the initial steps of membrane merger result in a lipid stalk (97,98). The 
stalk corresponds to an hourglass-like structure that may contain as few as a dozen 
lipid molecules (98–100). The expansion of the stalk then results in a hemifusion 
diaphragm (91,101). These steps are not as highly energetically unfavorable as later 
steps and can be experimentally observed by dehydration of planar lipid bilayers, 
even in the absence of SNAREs (92,93,100,102). Direct evidence for lipid stalks 
has come from x-ray–scattering experiments that have given us a structure of this 
intermediate (100). The hemifusion state has been shown to be a metastable inter-
mediate in vivo and can be observed for extensive periods of time in certain fusion 
reactions (103). Importantly, in vitro liposome fusion experiments have shown that 
hemifusion is an intermediate in the fusion pathway mediated by the synaptic vesi-
cle SNAREs (104–106). Hemifusion intermediates have also been seen at central 
synapses using conical electron tomography; hemifused vesicles corresponded to 
those vesicles that were docked at the active zone (107).

Aside from the tomography and x-ray–scattering experiments, the evidence 
for stalk intermediates and hemifusion diaphragms comes from two observations: 
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the sensitivity of the fusion reaction to lipids of different intrinsic curvature 
(108), and the exchange of lipid membrane without luminal content mixing 
(103,109–111). The intrinsic curvature of lipids is determined by the ratio of the 
size of the lipid head group to their acyl chain tails. For example, a lipid with a 
single acyl chain would promote a positive intrinsic curvature (convex). At stalk 
structures and hemifusion diaphragms the outer, nonfused monolayer must adopt 
a negative curvature (concave) (arrowheads in Fig. 3.3) compared to the fused 
proximal monolayer, which adopts a net positive curvature (Fig. 3.3). This model 
predicts that, when added at the final steps of fusion, lipids with negative curva-
ture would stimulate fusion while those with positive curvature would hinder 
fusion. Indeed, for all fusion reactions thus far tested, this prediction has been 
borne out (112). The application of lipids with altered curvature has been particu-
larly useful in determining at which step fusion is arrested in various experimen-
tal manipulations (91,95,112).

When the SNARE transmembrane domain is replaced by artificial lipid anchors 
or when the transmembrane domain is truncated, fusion no longer proceeds 
(95,96,113). However, these perturbations do lead to a state in which lipids can 
exchange—a hallmark of hemifusion (91). Interestingly, replacement of the mem-
brane anchor of the influenza hemagglutinin with an artificial membrane anchor, a 
glycosylphosphatidylinositol (GPI) tail, traps influenza viral fusion at a hemifusion 
stage (111). This observation demonstrates that membrane fusion events as varied 
as synaptic vesicle exocytosis and viral fusion might use a common mechanism to 
catalyze fusion. Importantly, the fusion arrest that results from the replacement of 
the transmembrane domain in both SNARE-based fusion and viral fusion can be 
bypassed by the addition of lipids with intrinsic negative curvature to the outer 
membrane or lipids that induce positive curvature to the inner membrane 
(95,114,115). This demonstrates that the proximity resulting from the SNARE pair-
ing might be enough to achieve a hemifusion state, but that full fusion requires the 
transmembrane domains of the respective fusion proteins (95,111,114).

The dependence on the transmembrane domains for full fusion also suggests 
that the zippering of the SNAREs might result in the transduction of force to the 
transmembrane domain. The domain linking the SNARE motif to the membrane 
may be rather rigid; when synaptobrevin and syntaxin are placed in planar bilay-
ers, they stand straight up from the membrane (116,117). Disrupting this rigidity 
by the addition of flexible linkers of incremental lengths, between the SNARE 
motif and the transmembrane domain, incrementally reduces fusion to complete 
elimination (50,96,113,118). In addition, mutations in the linker domain do not 
disrupt liposome fusion, while those in the SNARE motif have dramatic effects 
(119). This experiment favors the model of the linker as largely a force transducer 
(119). By contrast, mutations in the linker domain of yeast syntaxin (Sso1p) do 
cause dramatic decreases in fusion (120). Nonetheless, these results suggest that 
the winding of the SNARE proteins during core complex assembly transduces 
force to the transmembrane domains (96,116). Torque on the transmembrane 
domains might force dimples in the lipid bilayer at regions of trans SNARE com-
plex formation (84) (Fig. 3.3).
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It is likely that more than one core complex is required to catalyze fusion. Like 
viral fusion proteins, the SNAREs used in exocytosis also seem to work as higher 
order multimers (121). Thus, a ring of SNAREs could induce a controlled local 
disruption of lipids. One possibility is that the hemifusion diaphragm would be 
delineated by a ring of SNARE transmembrane domains (84,121). Alternatively, it 
has been suggested that the transmembrane domains of the SNAREs might serve as 
a proteinaceous pore (122). Though the interactions are quite weak (123), it has 
been shown that both syntaxin and synaptobrevin form higher order multimers via 
conserved regions located in their transmembrane domains (124–127). Electron 
microscopy has provided images of these multimers and shows that they form star-
shaped structures with the transmembrane domains at the vertex (128). In vivo evi-
dence for the existence of such multimers comes from the cooperative action of the 
SNAREs and dose dependency of inhibition by botulinum neurotoxins and SNARE 
peptide blockers (121,129–132). Together, the evidence has suggested multimers 
containing from between three and 15 complexes (121). Nonetheless, working 
models for multimerization are currently quite preliminary; it will remain to be seen 
how these multimers might aid in catalyzing fusion.

The Reliable Opposition: Protein Models for the Fusion Pore

Despite the appeal and considerable evidence for a lipidic fusion pore, there remain 
data suggesting that the fusion pore could be proteinaceous (133). First, it has been 
proposed that the SNAREs are the fusogen but that the pore is lined by the trans-
membrane of the five to eight syntaxin molecules rather than by lipids (122). This 
model derived from the observation that the replacement of residues in the trans-
membrane domain of syntaxin with bulky amino acids slowed the conductance of 
the initial fusion pore. Second, some data indicate that SNAREs were not involved 
in the fusion step. NSF disassembles SNARE complexes, yet in yeast overexpression 
of NSF (Sec18p) did not block vacuole fusion (134). Third, techniques that can 
detect early stages of pore formation, amperometry, and capacitance measurements 
indicate that the fusion pore in chromaffin cells might be formed by a protein. In 
these experiments the initial fusion pore was found to have a pore size equivalent to 
a large ion channel (approximately 1 to 2 nm in diameter) (135). In addition, these 
initial fusion pores “flickered” like ion channel fusion pores (132,135,136). Fourth, 
it has been proposed that the V

o
 sector of the vacuolar ATPase could act as a protein-

aceous fusion pore (137,138). In yeast, calcium and calmodulin might be required 
in a step after SNARE complex formation in the process of fusion (139). The target 
of calcium-calmodulin in this late step in fusion was identified as the V

o
 sector of the 

vacuolar ATPase (137). Furthermore, analysis of Drosophila mutants indicated that 
the vacuolar ATPase was important for fusion of synaptic vesicles (140).

Nonetheless, several points are difficult to reconcile with a protein pore–based 
model for fusion. First, trans SNARE complexes are resistant to the action of NSF, 
suggesting that functional SNAREs were still present in yeast experiments (141). 
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Second, fusion pore sizes have been found to vary considerably in different fusion 
reactions, an observation more consistent with a lipid-based pore (142). Third, null 
mutants in many of the SNAREs proteins have been shown to have a stronger phe-
notype—often they are completely inviable—than respective mutants in the vacu-
olar ATPase (143). Fourth, lysophosphatidyl choline, a lipid that induces positive 
membrane curvature, is able to block all fusion reactions so far tested (112). 
Finally, the observed fusion pore flickering has been seen in pure lipid bilayers 
induced to fuse by polyethylene glycol (PEG) (144). PEG dehydrates the spaces 
between lipid bilayers and drives lipid mixing. Flickering is therefore not a hall-
mark solely of proteinaceous fusion pores.

Other observations that are apparently inconsistent with the lipid-based model for 
fusion have arisen from liposome fusion assays. For example, NSF and other pro-
teins can catalyze the fusion of liposomes (145). However, the liposome fusion assay 
can be problematic (146). First, the lipid composition is critical in these assays and 
can produce misleading results; NSF could no longer fuse membranes when more 
physiologic lipid mixes were used (147). Second, many liposome fusion assays have 
used excessive and nonphysiologic concentrations of the SNARE molecules. Third, 
in most instances the speed of neurotransmitter release has not been replicated in this 
assay. Thus, results from liposome fusion assays must be interpreted cautiously and 
be supported by in vivo or genetic experiments.

SNAREs Encode Specificity

The original SNARE hypothesis proposed that compartmental specificity of fusion 
was encoded by SNARE proteins. Each intracellular fusion would be mediated by 
a specific set of SNARE proteins and thereby provide an addressing system for 
vesicle trafficking (27,28). This model makes several predictions. First, SNAREs 
should only bind their cognate SNARE partners. Second, SNAREs should only 
catalyze fusion when mixed with their SNARE partners. Third, SNAREs should be 
required for docking of vesicles to the correct target membrane. Fourth, the removal 
of a SNARE should selectively and completely eliminate fusion in one and only 
one fusion reaction. All of these hypotheses have been tested.

In vitro, the binding between cytoplasmic SNARE motifs is surprisingly promis-
cuous (148–150). However, these same SNAREs exhibited specificity in catalyzing 
fusion reactions when inserted into artificial lipid bilayers (151–152). Specifically, 
only cognate SNARE complexes could catalyze fusion reaction. To date, out of the 
275 pairwise combinations of yeast SNAREs tried, only nine are functional in the 
liposome fusion assay. Eight of these nine SNARE combinations represented inter-
actions that occur in vivo, thus the specificity of fusion is greater than 99% 
(274/275) accurate (151). This specificity is preserved among the neuronal 
SNAREs; after cleavage of SNAP-25 in PC12 cells, secretion could only be rescued 
by SNAP-25 itself and not other SNAP-25 homologues (152). Thus, the SNAREs 
can encode the specificity of fusion.
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Morphologic docking of synaptic vesicles long appeared to be independent of 
SNAREs. Genetic or pharmacologic disruption of SNAREs did not perturb synaptic 
vesicle docking (12,13,15,154). However, more recent experiments indicate that 
docking of synaptic vesicles (14) and dense core vesicles requires syntaxin (155–
157). Importantly, if syntaxin is required for docking, experiments claiming roles for 
syntaxin in fusion must be interpreted with caution since fusion is downstream of 
docking. Docking defects will lead by necessity to defects in fusion. The discrepancy 
for syntaxin’s role in docking could be due to different morphologic definitions of 
docking, which has been defined as everything from direct contact with the plasma 
membrane to vesicles 50 nm from the plasma membrane. Alternatively, additional 
docking factors might be present in some cell types to ensure the specificity of fusion 
(155). For example, syntaxin is required for docking in neurosecretory cells but not 
neurons in mice (155,157). Perhaps tethering factors also contribute to docking of 
synaptic vesicles at the active zone (158–162). Overlapping roles for SNAREs and 
docking factors have been observed in yeast (163,164). Specifically, sec35 encodes a 
tethering protein for Golgi trafficking in yeast; sec35 mutants can be partially 
bypassed by overexpression of the relevant SNARE proteins (165). Similarly, over-
expression of SNAREs can bypass mutations in the tethering complex for plasma 
membrane fusion (166,167). It is likely that these overlapping redundant functions 
are necessary to achieve the high level of fidelity seen in membrane trafficking.

Thus far in vivo perturbations of the SNAREs have mostly been shown to selec-
tively eliminate single trafficking steps. However, in all cases fusion was not 
completely eliminated. There are two possible explanations. First, it is possible that 
the SNAREs are not executing fusion—an unlikely interpretation given the wealth 
of data described above. Second, the SNAREs might be partially redundant. 
Evidence so far points to the latter interpretation. Knockout mice in synaptobrevin 
II were found to retain some synaptic activity in hippocampal neurons (16). In 
chromaffin cells, this remnant activity could be attributed to the synaptobrevin par-
alog cellubrevin (168). Redundancy can also explain the remaining fusion events in 
synaptobrevin null Drosophila mutants. Syb, the Drosophila equivalent of cellubre-
vin, can functionally substitute for n-Syb, the Drosophila equivalent of synaptobre-
vin, when overexpressed in neurons (169). Redundancy is also seen in the Q 
SNAREs. SNAP-23, SNAP-47, and SNAP-24 can provide partial function when 
SNAP-25 is absent (19,170,171). Finally, redundancy might also explain the almost 
complete lack of phenotype in syntaxin 1a knockout mice (172), where it is likely 
that syntaxin 1b is sufficient to almost entirely replace syntaxin 1a action. These 
observations are supported by experiments in yeast where redundancy between 
SNAREs has also been conclusively demonstrated in numerous trafficking reac-
tions (173–175). By contrast, loss of syntaxin (unc-64) in C. elegans neurons 
results in a 500-fold reduction in neurotransmitter release with no apparent devel-
opmental defects (14); UNC-64 is committed to synaptic vesicle fusion and is 
unlikely to have a redundant syntaxin, like in mice; nor is it involved in other cellu-
lar functions, like in flies (176). In summary, the SNAREs do encode specificity; 
nonetheless, in some instances it is likely that other factors can provide overlapping 
functions to ensure that fusion happens with the appropriate target membrane.
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SNARE Regulation

We will only touch on SNARE regulation briefly in this chapter, since other chap-
ters will cover this topic in greater depth. SNARE regulation can roughly be divided 
into two forms: before and after initiation of complex formation. Before core com-
plex formation, regulation involves occlusion of the SNARE motif of syntaxin to 
prevent the assembly of SNARE core complexes. After the initiation of SNARE 
assembly regulation likely takes place at the level of complex zippering. The cal-
cium-sensing machinery works at these later steps.

Syntaxin itself has its own regulatory domain; the N-terminal Habc domain can 
fold over and occlude the SNARE motif (Fig. 3.1). Syntaxin can adopt two confor-
mations: a closed form, in which the SNARE motif is occluded, and an open form, 
in which the SNARE motif is available to interact with SNAP-25 and synaptobre-
vin. At least two synaptic proteins, Unc13 and Unc18 proteins, have been proposed 
to act directly on this N-terminal extension of syntaxin (65,177). In C. elegans, 
unc-13 mutants can be partially bypassed by an open form of syntaxin, demonstrat-
ing a direct or indirect role of UNC-13 in the conversion of syntaxin from a closed 
to an open form (14,62,178). Several additional proteins may regulate SNARE complex 
assembly by directly occluding the SNARE motif of syntaxin. These molecules include
tomosyn, amisyn, and syntaphilin (59,62–64,179–181).

At steps after core complex assembly, regulation might take place at the level of 
preventing full zippering of the SNARE proteins. Three proteins—Unc18, com-
plexin, and synaptotagmin—may act at this late stage. The precise function of the 
SM superfamily of proteins, which include the Unc18 synaptic proteins, is not yet 
known (see Chapter 7), but Unc18 proteins might function in these later stages 
(70–73,182–184). Sec1p, the yeast SM homologue that acts at the plasma mem-
brane, binds to the SNARE complex rather than syntaxin monomers (185). Recent 
data suggest that Unc18 also uses this mode of interaction (70–73).

Complexin and synaptotagmin serve as part of the calcium-sensing machinery. 
The coupling of fusion to calcium influx is the key evolutionary modifications of 
SNARE function to adapt it for neurotransmission. At synapses, the time delay 
between the elevation in calcium concentration and the postsynaptic response can 
be as little as 60 to 200 μs (186). Though calcium is needed for fusion in other 
membrane trafficking steps, it usually serves as a facilitator of fusion rather than 
directly functioning as a signal in triggering fusion (187,188). The addition of com-
plexin and synaptotagmin appear to impart the calcium trigger to SNARE-mediated 
fusion (189, 190). Complexin appears to act as a fusion clamp—a brake preventing 
constitutive fusion from occurring (191–194).

Interestingly, recent experiments have shown that the complexin clamp holds 
the SNAREs in a state where the membranes are hemifused (193). This obser-
vation demonstrates that the transition from hemifusion to full fusion can be 
regulated at the cytoplasmic SNARE motifs. Complexin sits in a groove 
between syntaxin and synaptobrevin, potentially preventing the full zippering 
of the core SNARE complex (195,196). The calcium sensor is synaptotagmin 
(197–201). Synaptotagmin binds to lipids and to syntaxin and SNAP-25 in a 
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calcium-dependent manner (200–204). Importantly, synaptotagmin appears to 
compete with complexin for SNARE complex binding and relieves the clamp 
when calcium is present (reviewed in ref. 194). One possibility is that calcium 
binding allows synaptotagmin to actively displace complexin from the SNARE 
complex, which is then free to fully wind and to break the membrane of the 
hemifused intermediate. In this model the SNAREs could function like a wheel, 
with complexin the stick in the spokes preventing the wheel from turning. 
Calcium binding to synaptotagmin would pull the stick from the spokes and 
allow the wheel to turn and drive fusion. This model, however, remains specula-
tive, and several pieces of data are currently incompatible with the above model. 
First, complexin knockout in mice do not have elevated synaptic vesicle fusion, 
as would be predicted (205). In addition, synaptotagmin when reconstituted with 
the neuronal SNAREs in the liposome fusion assay, can act alone as both a 
fusion clamp in the absence of calcium as well as an accelerator of fusion in the 
presence of calcium (206). However, a second group did not observe calcium 
sensitivity in SNARE-mediated liposome fusion assays by the addition of syn-
aptotagmin; instead, synaptotagmin simply accelerated the rate of liposome 
fusion independent of calcium (207). Since subsequent chapters will delve fur-
ther into the murky depths of calcium regulation, here we will suffice to stay in 
the shallow end of the pool.

Conclusion

Rounds of SNARE assembly and disassembly lie at the center of all vesicular traf-
ficking. Assembly of the SNAREs into a four-helix bundle drives fusion of synaptic 
vesicles with the plasma membrane and thereby mediates the release of neurotrans-
mitter. The entwined SNAREs are then pulled apart by the ATPase NSF, which 
reenergizes the system for further rounds of fusion. This model is widely accepted, 
yet its details are in considerable dispute. So far, reconstitution experiments have 
examined interactions between only a very few of the proteins involved in what is 
undoubtedly a complex and highly regulated fusion machine. As such, they have 
given us largely static images of the complex. Thus, the overarching challenge in 
the coming years will be to understand the regulation of the SNAREs and how the 
assembly of SNAREs catalyzes fusion.

Several questions must be resolved. First, is a preassembled Q-SNARE acceptor 
complex present on the plasma membrane in vivo, and if so how is it stabilized? 
Second, how is assembly of the SNAREs regulated? SNARE regulators, including 
MUN domain proteins such as Unc13, SM proteins, and Tomosyn, have been iden-
tified, yet their mechanism of action is unclear. Third, are SNAREs fully zippered 
prior to or during fusion? Fourth, is SNARE complex zippering arrested in the read-
ily releasable pool of synaptic vesicles? Fifth, does formation of the SNARE com-
plex generate a hemifusion intermediate? And finally, what rearrangements occur 
in the SNARE complex when synaptotagmin binds calcium and phospholipids?
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